留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SHPB实验考虑绝热变形和端面摩擦的修正方法

俞晓强 郑百林 杨彪 史同承

俞晓强, 郑百林, 杨彪, 史同承. SHPB实验考虑绝热变形和端面摩擦的修正方法[J]. 航空动力学报, 2018, 33(10): 2367-2375. doi: 10.13224/j.cnki.jasp.2018.10.008
引用本文: 俞晓强, 郑百林, 杨彪, 史同承. SHPB实验考虑绝热变形和端面摩擦的修正方法[J]. 航空动力学报, 2018, 33(10): 2367-2375. doi: 10.13224/j.cnki.jasp.2018.10.008
Correction method of SHPB experiment considering adiabatic deformation and interfacial friction effects[J]. Journal of Aerospace Power, 2018, 33(10): 2367-2375. doi: 10.13224/j.cnki.jasp.2018.10.008
Citation: Correction method of SHPB experiment considering adiabatic deformation and interfacial friction effects[J]. Journal of Aerospace Power, 2018, 33(10): 2367-2375. doi: 10.13224/j.cnki.jasp.2018.10.008

SHPB实验考虑绝热变形和端面摩擦的修正方法

doi: 10.13224/j.cnki.jasp.2018.10.008
基金项目: 上海市航空发动机领域联合创新计划项目(AR905)

Correction method of SHPB experiment considering adiabatic deformation and interfacial friction effects

  • 摘要: 采用高温分离式霍普金森压杆(SHPB)实验技术对GH4169高温合金进行测试,获得了材料在高应变率下的温度敏感性,并拟合了Johnson-Cook本构模型的参数。结合数值计算方法对压缩实验中试件内部的应力、应变以及温度的分布建立了一个半经验的数学模型并提出了一种新的参数修正方法,将端面摩擦效应、绝热变形升温效应与SHPB实验结果进行解耦。实验结果表明:温度越高,GH4169高温合金的屈服强度以及流动应力越小。并且在SHPB实验中GH4169高温合金存在明显的绝热变形升温效应和端面摩擦效应,导致实验结果并不能真实反映材料的硬化特性。通过对原始Johnson-Cook本构方程的硬化项乘以1.2的修正系数,发现修正后的本构参数准确反映了材料在高应变率下的应力应变特性。

     

  • [1] 胡时胜.霍普金森压杆技术[J].兵器材料科学与工程,1991(11):40-47.
    [2] KOLSKY H.An investigation of the mechanical properties of materials at very high rates of loading[J].Proceedings of the Physical Society:B,1949,62(11):676-700.
    [3] KOLSKY H.Stress waves in solids[M].North Chelmsfordv,US:Courier Corporation,1963.
    [4] MESCALL J,PAPIRNO R,MCLAUGHLIN J.Stress and deformation states associated with upset tests in metals[M]∥CHAIT R,PAPIRNO R.Compression Testing of Homogeneous Materials and Composites.West Conshohocken,US:American Society for Testing and Materials,1983:7-23.
    [5] CHEN F K,CHEN C J.On the nonuniform deformation of the cylinder compression test[J].Journal of Engineering Materials and Technology,2000,122(2):192-197.
    [6] AL-CHALABI M,MCCORMICK F J,HUANG C L.Strain distribution within compressed circular cylinders[J].Experimental Mechanics,1974,14(12):497-501.
    [7] BELL J F.An experimental diffraction grating study of the quasi-static hypothesis of the split Hopkinson bar experiment[J].Journal of the Mechanics and Physics of Solids,1966,14(6):309-327.
    [8] BERTHOLF L D,KARNES C H.Two-dimensional analysis of the split Hopkinson pressure bar system[J].Journal of the Mechanics and Physics of Solids,1975,23(1):1-19.
    [9] MALINOWSKI J Z,KLEPACZKO J R.A unified analytic and numerical approach to specimen behaviour in the split-Hopkinson pressure bar[J].International Journal of Mechanical Sciences,1986,28(6):381-391.
    [10] KLEPACZKO J,MALINOWSKI Z.Dynamic frictional effects as measured from the split Hopkinson pressure bar[M]∥KAWATA K,SHIOIRI J.High Velocity Deformation of Solids.Berlin:Springer Berlin Heidelberg,1979:403-416.
    [11] 李萍,段园培,张青,等.基于摩擦修正的TB8合金热压缩流变应力行为分析[J].稀有金属,2009,33(2):137-141.LI Ping,DUAN Yuanpei,ZHANG Qing,et al.Flow stress behavior of TB8 alloy under hot compression deformation based on friction correction[J].Chinese Journal of Rare Metals,2009,33(2):137-141.(in Chinese)
    [12] 张银喜,张军,黄文,等.纯钛高应变率拉伸力学行为的实验研究[J].材料工程,2011(12):6-9.ZHANG Yinxi,ZHANG Jun,HUANG Wen,et al.Experimental study on tension behavior of pure titanium at high strain rates[J].Journal of Materials Engineering,2011(12):6-9.(in Chinese)
    [13] KAPOOR R,NEMAT-NASSER S.Determination of temperature rise during high strain rate deformation[J].Mechanics of Materials,1998,27(1):1-12.
    [14] MASON J J,ROSAKIS A J,RAVICHANDRAN G.On the strain and strain rate dependence of the fraction of plastic work converted to heat:an experimental study using high speed infrared detectors and the Kolsky bar[J].Mechanics of Materials,1994,17(2/3):135-145.
    [15] NEMAT-NASSER S.Hopkinson techniques for dynamic recovery experiments[J].Proceedings of the Royal Society A,1991,435(1894):371-391.
    [16] 李玉龙,索涛,郭伟国,等.确定材料在高温高应变率下动态性能的Hopkinson 杆系统[J].爆炸与冲击,2005,25(6):487-492.LI Yulong,SUO Tao,GUO Weiguo,et al.Determination of dynamic behavior of materials at elevated temperature and high strain rates using Hopkinson bar[J].Explosion and Shock Waves,2005,25(6):487-492.(in Chinese)
    [17] JOHNSON G R,COOK W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[C]∥Proceedings of the 7th International Symposium on Ballistics.Arlington,US:National Defense Industrial Association,1983:541-547.
    [18] 王晓燕.分离式霍普金森压杆实验端面摩擦效应研究[D].长沙:国防科学技术大学,2004.WANG Xiaoyan.A study of effects os interfacial friction in the split Hopkinson pressure bar tests[D].Changsha:National University of Defense Technology,2004.(in Chinese)
    [19] EBRAHIMI R,NAJAFIZADEh A.A new method for evaluation of friction in bulk metal forming[J].Journal of Materials Processing Technology,2004,152(2):136-143.
  • 加载中
计量
  • 文章访问数:  660
  • HTML浏览量:  2
  • PDF量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-22
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回