留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

推力室冷却通道结构可靠性仿真及参数敏感性分析

张晟 金平 蔡国飙

张晟, 金平, 蔡国飙. 推力室冷却通道结构可靠性仿真及参数敏感性分析[J]. 航空动力学报, 2018, 33(11): 2651-2659. doi: 10.13224/j.cnki.jasp.2018.11.011
引用本文: 张晟, 金平, 蔡国飙. 推力室冷却通道结构可靠性仿真及参数敏感性分析[J]. 航空动力学报, 2018, 33(11): 2651-2659. doi: 10.13224/j.cnki.jasp.2018.11.011
Structural reliability simulation and parameter sensitivityanalysis of cooling channel for thrust chamber[J]. Journal of Aerospace Power, 2018, 33(11): 2651-2659. doi: 10.13224/j.cnki.jasp.2018.11.011
Citation: Structural reliability simulation and parameter sensitivityanalysis of cooling channel for thrust chamber[J]. Journal of Aerospace Power, 2018, 33(11): 2651-2659. doi: 10.13224/j.cnki.jasp.2018.11.011

推力室冷却通道结构可靠性仿真及参数敏感性分析

doi: 10.13224/j.cnki.jasp.2018.11.011
基金项目: 载人航天领域预先研究项目(050302)

Structural reliability simulation and parameter sensitivityanalysis of cooling channel for thrust chamber

  • 摘要: 为了准确高效评估液体火箭发动机推力室身部再生冷却通道的结构可靠性,建立了基于有限元热结构耦合计算的结构可靠性仿真流程。考虑发动机干扰因素、身部结构尺寸及内外壁材料性能的随机性,利用Monte Carlo(MC)仿真和Epps-Pulley(EP)检验确定危险点的等效应力分布,根据基于参数估计区间的应力-强度干涉模型及点估计下限和Lindstrom-Maddens(L-M)法,确定冷却通道结构可靠度置信下限,并进行参数敏感性分析。结果表明:该结构可靠性仿真能够确定内壁失效的危险点,得到工程上更具实用价值的可靠度置信下限;外壁的强度裕度远大于内壁,冷却通道的结构可靠性取决于内壁;提高推力室燃烧效率或选用导热率稍低,而强度更高的内壁材料,是提高冷却通道结构可靠性的有效途径。

     

  • [1] CHARLES A M.Reusable rocket engine maintenance study[R].NASA-CR-165569,1982.
    [2] 殷谦,张金容.液体火箭发动机故障模式及分析[J].推进技术,1997,18(1):22-25.YIN Qian,ZHANG Jinrong.Failure mode and anslysis for liquid propellant rocket engines[J].Journal of Propulsion Technology,1997,18(1):22-25.(in Chinese)
    [3] 王哲君,强洪夫,常新龙,等.结构可靠性仿真方法研究[J].力学与实践,2014,36(1):9-22.WANG Zhejun,QIANG Hongfu,CHANG Xinlong,et al.The structure reliability simulation[J].Machanics in Engineering,2014,36(1):9-22.(in Chinese)
    [4] KRISHNAVENI A,CHRISTOPHER T,JEYAKUMAR K,et al.Probabilistic failure prediction of high strength steel rocket motor cases[J].Journal of Failure Analysis and Prevention,2014,14(4):478-490.
    [5] RAOUF N,POURTAKDOUST S H,ABADI B A A,et al.Structural reliability analysis of solid rocket motor with ellipsoidal cap[J].Journal of Spacecraft and Rockets,2016,53(2):1-4.
    [6] BOZKAYA K,SUMER B,KURAN B,et al.Reliability analysis of a solid rocket motor based on response surface method and monte carlo simulation[R].Tucson:the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2005.
    [7] COOK R T.Advanced cooling techniques for high-pressure hydrocarbon-fueled engines[R].NASA-CR-159790,1979.
    [8] CUSUMANO J P,ROY A,LI Q.Damage dynamics,rate laws,and failure statistics via Hamiltons principle[J].Meccanica,2015,50(1):77-98.
    [9] 郑大勇,王维彬,乔桂玉.新一代运载火箭50吨级氢氧发动机研制进展[J].导弹与航天运载技术,2016,47(5):11-15. ZHENG Dayong,WANG Weibing,QIAO Guiyu.Progress of the 50t class oxygen/hydrogen engine for new generation launch vehicle[J].Missile and Space Vehicles,2016,47(5):11-15,22.(in Chinese)
    [10] 孙冰,张建伟.火箭发动机热防护技术[M].北京:北京航空航天大学出版社,2016.
    [11] 吴峰,王秋旺,罗来勤,等.液体推进剂火箭发动机推力室再生冷却通道三维流动与传热数值计算[J].航空动力学报,2005,20(4):707-712. WU Feng,WANG Qiuwang,LUO Laiqin,et al.Numerical simulation of heat transfer and fluid flow in cooling channel of the liquid rocket thrust chamber[J].Journal of Aerospace Power,2005,20(4):707-712.(in Chinese)
    [12] 张丽娜,许青,迟宏波,等.CuZr 0.15锆无氧铜真空扩散焊接工艺及力学性能[J].航天制造技术,2014,22(3):6-9.ZHANG Lina,XU Qing,CHI Hongbo,et al.Vacuum diffusion welding technology and mechanical property of CuZr 0.15[J].Aerospace Manufacturing Technology,2014,22(3):6-9.(in Chinese)
    [13] 魏超.液体火箭发动机特种制造技术[M].北京:中国宇航出版社,2014.
    [14] 丁兆波,孙纪国.推力室内壁热结构寿命预估及延寿技术研究[J].推进技术,2013,34(8):1088-1094.DING Zhaobo,SUN Jiguo.Studies on life-prediction and life-enhancing technology for regenerative cooling channel[J].Journal of Propulsion Technology,2013,34(8):1088-1094.(in Chinese)
    [15] 杨进慧.可重复使用液体火箭发动机推力室身部设计方法研究[D].北京:北京航空航天大学,2016.YANG Jinhui.Design method of the reusable rocket engine combustion chamber wall[D].Beijing:Beijing University of Aeronautics and Astronautics,2016.(in Chinese)
    [16] 杨进慧,陈涛,金平,等.液体火箭发动机再生冷却槽寿命预估[J].航空动力学报,2012,27(4):907-912.YANG Jinhui,CHEN Tao,JIN Ping,et al.Life prediction of cooling passage for reusable liquid rocket engine[J].Journal of Aerospace Power,2012,27(4):907-912.(in Chinese)
    [17] 宋笔锋,张永苍.结构体系失效概率计算方法及应用[M].北京:国防工业出版社,2011.
    [18] PROP M,SCHMIDT G.Rocket engine combustion chamber design concepts for enhanced Life[R].AIAA 96-3303-601,1996.
    [19] 《中国航空材料手册》编辑委员会.中国航空材料手册:第1卷 结构钢、不锈钢[M].北京:中国标准出版社,2002:474-572.
    [20] 叶茂,赵秀英,王淑青,等.沟槽内壁锆无氧铜热处理方法:CN201510484422.5[P].2015-11-18.
    [21] ESPOSITO J J,ZABORA R F.Thrust chamber life prediction:Volume 1 mechanical and physical properties of high performance rocket nozzle materials[R].NASACR-134806,1975.
    [22] 刘红军.液氧/煤油发动机稳态参数分布特性的仿真[J].推进技术,2004,25(5):385-387.LIU Hongjun.Monte-Carlo simulation on static characteristics of a liquid oxygen kerosene staged combustion cycle engine[J].Journal of Propulsion Technology,2004,25(5):385-387.(in Chinese)
    [23] 郑大勇,严勇,李宝盛.随机仿真方法在低温液体火箭发动机性能可靠性预估中的应用[C]∥第8届全国低温工程大会暨中国航天低温专业信息网年度学术交流会论文集.北京:中国航天低温专业信息网,2007:539-545.
    [24] 樊江,廖祜明,李达,等.考虑几何分散性的涡轮盘寿命概率分析[J].航空动力学报,2017,32(1):66-74.FAN Jiang,LIAO Huming,LI Da,et al.Probabilistic analysis of turbine disk fatigue llife considering geometric uncertainties[J].Journal of Aerospace Power,2017,32(1):66-74.(in Chinese)
    [25] 刘少军,路春雨.直升机高速四点接触球轴承接触疲劳可靠性评估方法[J].航空动力学报,2017,32(1):130-137.LIU Shaojun,LU Chunyu.Contact fatigue reliability assessment method of high speed four-point contact ball bearing of helicopter[J].Journal of Aerospace Power,2017,32(1):130-137.(in Chinese)
    [26] 茆诗松,周纪芗.概率论与数理统计[M].北京:中国统计出版社,2007.
    [27] 包洪兵,姚卫星.基于参数估计区间的应力-强度干涉模型[J].机械科学与技术,2010,29(2):239-243.BAO Hongbing,YAO Weixing.A stress-strength interference model based on parameter estimation interval[J].Mechanical Science and Technology for Aerospace Engineering,2010,29(2):239-243.(in Chinese)
    [28] 谭松林,李宝盛.液体火箭发动机可靠性[M].北京:中国宇航出版社,2014.
  • 加载中
计量
  • 文章访问数:  718
  • HTML浏览量:  1
  • PDF量:  698
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-06
  • 刊出日期:  2018-11-28

目录

    /

    返回文章
    返回