留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结冰环境下结冰/除冰过程的气动参数测量实验技术

肖春华 于昆龙 陈辅政 李明

肖春华, 于昆龙, 陈辅政, 李明. 结冰环境下结冰/除冰过程的气动参数测量实验技术[J]. 航空动力学报, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.001
引用本文: 肖春华, 于昆龙, 陈辅政, 李明. 结冰环境下结冰/除冰过程的气动参数测量实验技术[J]. 航空动力学报, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.001
Test technique of aerodynamic parameters measurement during icing/de-icing process under icing environment[J]. Journal of Aerospace Power, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.001
Citation: Test technique of aerodynamic parameters measurement during icing/de-icing process under icing environment[J]. Journal of Aerospace Power, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.001

结冰环境下结冰/除冰过程的气动参数测量实验技术

doi: 10.13224/j.cnki.jasp.2018.12.001
基金项目: 国家自然科学基金委员会资助面上项目(11572338);国家重点基础研究计划(2015CB755804)

Test technique of aerodynamic parameters measurement during icing/de-icing process under icing environment

  • 摘要: 采用结冰风洞实验方法,在0.3m×0.2m结冰风洞第二实验段对圆柱模型的结冰/除冰过程进行了气动参数测量实验。建立了电加热圆柱模型和适合低温高湿环境的五分量外式微量天平,获得了结冰气象环境下圆柱模型结冰/除冰过程的气动力/力矩随时间的变化规律。喷雾对载荷和动压的影响可以忽略,单位时间内模型受到喷雾的最大水平力、最大动压增量分别为0.6%和0.2%。基于结冰风洞低温高湿环境的测力实验技术可以捕捉结冰/除冰过程的气动力/力矩变化。结冰过程中,圆柱模型阻力系数随时间不断增大,呈现出近似线性增长趋势,而升力系数、俯仰力矩系数、偏航力矩系数、滚转力矩系数的变化可忽略不计。除冰过程中,前缘冰壳滑动改变了姿态,会造成阻力系数、偏航力矩系数、滚转力矩系数等迅速变化,其对气动性能的影响难以预测。

     

  • [1] LYNCH F T,KHODADOUST A.Effects of ice accretions on aircraft aerodynamics[J].Progress in Aerospace Sciences,2001,37(8):669-767.
    [2] KIND R J,POTAPCZUK M G,FEO A,et.al.Experimental and computational simulation of in-flight icing phenomena[J].Progress in Aerospace Sciences,1998,34(5/6):275-345.
    [3] KEVIN R P,CAROL D J.A statistical review of aviation airframe icing accidents in the U.S[R].Washington D C:National Transportation Safety Board (NTSB),2004.
    [4] COLE J A,SAND W R.Statistical study of aircraft icing accidents[R].AIAA 91-0558,1991.
    [5] BRAGG M B,BROEREN A P,BLUMENTHAL L A.Iced-airfoil aerodynamics[J].Progress in Aerospace Sciences,2005,41(5):323-362.
    [6] GRAY V H.Correlations among ice measurements,impingement rates,icing conditions,and drag coefficients for unswept NACA 65A004 airfoil[R].National Advisory Committee for Aeronautics,NACA TN-4151,1958.
    [7] GRAY V H,VONGLAHN U H.Aerodynamic effects caused by icing of an unswept NACA 65A004 airfoil[R].National Advisory Committee for Aeronautics,NACA TN-4155,1957.
    [8] GRAY V H.Prediction of aerodynamic penalties caused by ice formations on various airfoils[R].NASA TN D-2166,1964.
    [9] BRUMBY R E.Wing surface roughness:cause and effect[J].Flight Approach,1979,32:2-7.
    [10] BRAGG M B.Rime ice accretion and its effect on airfoil performance[D].Columbus:Ohio State University,1981.
    [11] BRAGG M B,GREGOREK G M.Aerodynamic characteristics of airfoils with ice accretions[R].AIAA 82-0282,1982.
    [12] BRAGG M B.Predicting airfoil performance with rime and glaze ice accretions[R].AIAA 84-0106,1984.
    [13] BRAGG M B,GREGOREK G M,SHAW R J.Wind tunnel investigation of airfoil performance degradation due to icing[R].AIAA 82-0582,1982.
    [14] ZAGULI R J,BRAGG M B,GREGOREK G M.Results of an experimental program investigating the effects of simulated ice on the performance of the NACA 63A415 airfoil with flap[R].NASA CR-168288,1984.
    [15] LEE S,BRAGG M B.Investigation of factors affecting iced-airfoil aerodynamics[J].Journal of Aircraft,2003,40(3):499-508.
    [16] BHARGAVA C,LOTH E,POTAPCZUK M.Simulating the aerodynamics of the NASA John H.Glenn Icing Research Tunnel[J].Journal of Aircraft,2005,42(3):671-684.
    [17] BRAGG M B,GREGOREK G M,LEE J D.Airfoil aerodynamics in icing conditions[J].Journal of Aircraft,1986,23(1):76-81.
    [18] DE G F,ESPOSITO B,MINGIONE G,et al.Experimental and computational aerodynamics applications for an icing wind tunnel design[R].Trondheim,Norway:The Fluid Dynamics Panel Symposium,1996.
    [19] SOEDER R H,SHELDON D W,ANDRACCHIO C R,et al.NASA Lewis Icing Research Tunnel user manual[R].NASA TM-107159,1996.
    [20] VECCHIONE L,DEMATTEIS P,LEONE G.An overview of the CIRA Icing Wind Tunnel[R].AIAA-2003-900,2003.
    [21] 肖春华,桂业伟,杜雁霞,等.电热除冰传热特性的结冰风洞实验研究[J].实验流体力学,2010,24(4):22-24.XIAO Chunhua,GUI Yewei,DU Yanxia,et al.Experimental study on heat transfer characteristics of aircraft electrothermal deicing in icing wind tunnel[J].Journal of Experiments in Fluid Mechanics,2010,24(4):21-24.(in Chinese)
    [22] BARLOW J B,RAE W H,POPE A.Low-speed wind tunnel testing[M].New York:John Wiley and Sons Incorporation,1966.
    [23] BILANIN A J.Scaling laws for testing airfoils under heavy rainfall[J].Journal of Aircraft,1987,24(1):31-37.
    [24] THOMPSON B E,JANG J,DION J L.Wing performance in moderate rain[J].Journal of Aircraft,1995,32(5):1034-1039.
    [25] HASTINGS E C,MANUEL G S.Scale-model tests of airfoils in simulated heavy rain[J].Journal of Aircraft,1985,22(6):536-540.
    [26] HAINES P,LUERS J.Aerodynamic penalties of heavy rain on landing airplanes[J].Journal of Aircraft,1983,20(2):111-119.
  • 加载中
计量
  • 文章访问数:  706
  • HTML浏览量:  1
  • PDF量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-14
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回