留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷嘴内湍流运动对火焰浮起长度影响的数值模拟

齐文亮 明平剑 张文平 王文辉

齐文亮, 明平剑, 张文平, 王文辉. 喷嘴内湍流运动对火焰浮起长度影响的数值模拟[J]. 航空动力学报, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.006
引用本文: 齐文亮, 明平剑, 张文平, 王文辉. 喷嘴内湍流运动对火焰浮起长度影响的数值模拟[J]. 航空动力学报, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.006
Numerical simulation of effect of turbulence flow in nozzle on flame lift-off length[J]. Journal of Aerospace Power, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.006
Citation: Numerical simulation of effect of turbulence flow in nozzle on flame lift-off length[J]. Journal of Aerospace Power, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.006

喷嘴内湍流运动对火焰浮起长度影响的数值模拟

doi: 10.13224/j.cnki.jasp.2018.12.006
基金项目: 国家自然科学基金(51479038);中央高校基本科研业务费专项资金资助(HEUCFP201711)

Numerical simulation of effect of turbulence flow in nozzle on flame lift-off length

  • 摘要: 为考虑喷嘴内部湍流运动对燃油雾化和火焰浮起长度的影响,将喷嘴内部的湍流流动以权重的形式加入初次破碎模型中,并对二次破碎模型进行了修正。建立了完整的燃油雾化和燃烧的数学模型。通过与实验数据对比来验证燃油雾化模型的准确性,并讨论了喷嘴内湍流运动对燃油雾化过程的影响。结果表明,湍流运动会加快液滴破碎和蒸发的速率,从而减小燃油蒸气贯穿距。火焰浮起长度的计算采用本文建立的燃油雾化模型,成功计算了火焰浮起长度随氧气体积分数、气体密度、气体温度和入射压力变化的规律。同时发现在不同气体密度和氧气体积分数的工况下,喷嘴内部湍流运动对火焰浮起长度的影响基本保持不变,分别为9%和13%;入射压力和气体温度的升高会导致喷嘴内部湍流对火焰浮起长度的影响逐渐变大。

     

  • [1] HIGGINS B,SIEBERS D L.Measurement of the flame lift-off location on DI diesel sprays using OH chemiluminescence[R].SAE Paper 2001-01-0918,2001.
    [2] CHETAN B,MUHSIN A,JOHN A.Evaluation of an unsteady flamelet progress variable model for autoignition and flame lift-off in diesel jets[J].Combustion Science & Technology,2013,185(3):454-472.
    [3] KONG S C,SUN Y,REITZ R D.Numerical study of flame lift-off and soot formation in diesel fuel jets[R].ILASS Paper California,2005.
    [4] CAMPBELL J W,GOSMAN A D,HARDY G.Analysis of premix flame and lift-off in diesel spray combustion using multi-dimensional CFD[R].SAE Paper 2008-01-0968,2008.
    [5] SOM S,SURESH K A.Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines[J].Combustion and Flame,2010,157(6):1179-1193.
    [6] YU Yang,SONG G.Numerical study of diesel lift-off flame and soot formation under low-temperature combustion[J].Energy & Fuels,2016,30(3):2035-2042.
    [7] 雷国东.非结构网格FVM在复杂几何结构的湍流反应流计算中的应用研究[D].哈尔滨:哈尔滨工程大学,2008.LEI Guodong.The application and research of the unstructured grid FVM in the turbulent reaction flows simulation with complex geometries[D].Harbin:Harbin Engineering University,2008.(in Chinese)
    [8] 明平剑.基于非结构化网格气液两相流数值方法及并行计算研究与软件开发[D].哈尔滨:哈尔滨工程大学,2008.MING Pingjian.Development of numerical modeling for gas-liquid two-phase flows based on unstructured grids and parallel computing[D].Harbin:Harbin Engineering University,2008.(in Chinese)
    [9] REITZ R D.Modeling atomization processes in high-pressure vaporizing sprays[J].Atomization and Spray Technology,1987,3(4):309-337.
    [10] PATTERSON M A,REITZ R D.Modeling the effects of fuel spray characteristics on diesel engine combustion and emission[R].SAE Paper 980131,1998.
    [11] OROURKE P J,AMSDEN A A.The TAB method for numerical calculation of spray droplet breakup[R].SAE Paper TP872089,1987.
    [12] HALSTEAD M P,KIRSCH L J,QUINN C P.The autoignition of hydrocarbon fuels at high temperatures and pressures-fitting of a mathematical model[J].Combustion and Flame,1977,30:45-60.
    [13] SCHAPERTONS H,LEE W.Multidimensional modelling of knocking combustion in SI engines[R].SAE Paper 850502,1985.
    [14] ABRAHAM J,BRACCO F V,REITZ R D.Comparisons of computed and measured premixed charge engine combustion[J].Combustion and Flame,1985,60(3):309-322.
    [15] KONG S C,HAN Z,REITZ R D.The development and application of a diesel ignition and combustion model for multidimensional engine simulation[R].SAE Paper 950278,1995.
    [16] PAYRI R,MOLINA S,SALVADOR F J.A study of the relation between nozzle geometry,internal flow and sprays characteristics in diesel fuel injection sytems[J].Journal of Mechanical Science and Technology,2004,18(7):1222-1235.
    [17] HE Z,ZHONG W,WANG Q.Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle[J].International Journal of Thermal Sciences,2013,70(8):132-143.
    [18] HUH K Y,LEE E,KOO J Y.Diesel spray atomization model considering nozzle exit turbulence conditions[J].Atomization and Sprays,1988,8(4):453-469.
    [19] 刘永丰,明平剑,张文平,等.一种固定网格上拉格朗日点追踪的快速算法[J].计算物理,2010,27(4):527-532.LIU Yongfeng,MING Pingjian,ZHANG Wenping,et al.An efficient Lagrange point tracking algorithm for fixed grids[J].Chinese Journal of Computational Physics.2010,27(4):527-532.(in Chinese)
    [20] NORDIN N.Complex chemistry modeling of diesel spray combustion[D].Gteborg:Chalmers University of Technology,2001.
    [21] AMSDEN A A.KIVA-3V:a block-structured KIVA program for engines with vertical or canted valves[R].Los Alamos National Laboratory LA-13313-MS,1997.
    [22] ZHANG Y,JIA M,LIU H,et al.Development of a new spray/wall interaction model for diesel spray under PCCI-engine relevant conditions[J].Atomization Sprays,2014,24(1):41-80.
    [23] NABER J D,SIEBERS D L.Effects of gas density and vaporization on penetration and dispersion of diesel sprays[R].SAE Papers 960034,1996.
    [24] SIEBERS D L.Liquid-phase fuel penetration in diesel sprays[R].SAE Papers 980809,1998.
    [25] SIEBERS D L,HIGGINS B S.Effects of injector conditions on the flame lift-off length of DI diesel sprays[C]∥Proceedings of the Conference on Thermo-and Fluid-Dynamic Processes in Diesel Engines.Valencia,Spain:Office of Scientific and Technical Information,2000:253-277.
  • 加载中
计量
  • 文章访问数:  594
  • HTML浏览量:  4
  • PDF量:  590
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-09
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回