留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热力学效应对液氢非定常空化流动的影响

王永康 张敏第 陈泰然 黄彪

王永康, 张敏第, 陈泰然, 黄彪. 热力学效应对液氢非定常空化流动的影响[J]. 航空动力学报, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.007
引用本文: 王永康, 张敏第, 陈泰然, 黄彪. 热力学效应对液氢非定常空化流动的影响[J]. 航空动力学报, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.007
Effects of thermodynamic on unsteady cavitation flow of liquid hydrogen[J]. Journal of Aerospace Power, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.007
Citation: Effects of thermodynamic on unsteady cavitation flow of liquid hydrogen[J]. Journal of Aerospace Power, 2018, 33(12). doi: 10.13224/j.cnki.jasp.2018.12.007

热力学效应对液氢非定常空化流动的影响

doi: 10.13224/j.cnki.jasp.2018.12.007
基金项目: 国家自然科学基金(51106009)

Effects of thermodynamic on unsteady cavitation flow of liquid hydrogen

  • 摘要: 为研究热力学效应对低温流体非定常空化流动的影响,以液氢为研究对象,采用大涡模拟计算了热力学和等温条件下液氢绕回转体的非定常空化流动。计算结果表明:热力学效应延长了液氢的空化周期,增强了空化的非定常特性,抑制了空化的发展。热力学条件下的空泡团内部包含更细、更小的气泡,呈现出多孔质特征,且使整个流域存在1.5K左右的温度波动。通过旋涡运动分析发现,热力学效应使旋涡结构由空穴交界面向空穴内部移动。基于涡量传输方程分析了热力学和等温条件下空穴和旋涡的交互作用,发现在热力学条件下,旋涡伸长项的作用位置主要位于空穴前端和尾端的交界面处,旋涡扩张项和斜压扭矩项主要位于空穴内部;在等温条件下,旋涡伸长项和旋涡扩张项主要位于空穴上方交界面处,斜压扭矩项主要位于空穴尾端。

     

  • [1] BATCHELOR G K.An introduction to fluid dynamics[M].New York:Cambridge University Press,1967.
    [2] MAT S K,OHIGASHI H,ITO T,et al.H-ⅡA rocket engine development[J].Mitsubishi Juko Giho,2002,39(2):8-11.
    [3] 黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社,1991.
    [4] TSUJIMOTO Y,YOSHIDA Y,HASHIMATO T.Observations of oscillating cavitation of an inducer[J].Journal of Fluids Engineering,1997,119(4):775-781.
    [5] BAKIR F,REY R,GERBER A G.Numerical and experimental investigations of the cavitating behavior of an inducer[J].International Journal of Rotating Machinery,2004,10(1):15-25.
    [6] RUBIN S.Longitudinal instability of liquid rockets due to propulsion feedback (POGO)[J].Journal of Spacecraft and Rockets,1966,3(8):1188-1195.
    [7] ROBERT S R,LOREN A G,MILLS D,et al.The space shuttle main engine liquid oxygen pump high-synchronous vibration issue,the problem,the resolution approach,the solution[R].AIAA 94-3153,1994.
    [8] SEKITA R,WATANABE A,HIRATA K,et al.Lessons learned from H-2 failure and enhancement of H-2A project[J].Acta Astronautica,2011,48(5)431-438.
    [9] 时素果.空化热力学效应及数值计算模型研究[D].北京:北京理工大学,2012.SHI Suguo.Thermodynamic effects on cavitation and the modeling issues[D].Beijing:Beijing Institute of Technology,2012. (in Chinese)
    [10] FRANC J P,JANSON E,MOREL P,et al.Visualizations of leading edge cavitation in an inducer at different temperatures[R].Pasadena,Canada:Fourth International Symposium on Cavitation,2001.
    [11] FRANC J P,REBATTET C,COULON A.An experimental investigation of thermal effects in a cavitating inducer[R].Osaka,Japan:Fifth International Symposium on Cavitation,2003.
    [12] CERVONE A,BRAMANTI C,RAPPOSELLI E,et al.Thermal cavitation experiments on a NACA 0015 hydrofoil[J].Journal of Fluids Engineering,2006,128(2):326-331.
    [13] CERVONE A,TESTA R,BRAMANTI C,et al.Thermal effects on cavitation instabilities in helical inducers[J].Journal of Propusion and Power,2005,21(5):893-899.
    [14] NIIYAMA K,YOSHIDA Y,HASEGAWA S,et al.Experimental investigation of thermodynamic effect on cavitation in liquid nitrogen[R].Singapore:the 8th International Symposium on Cavitation,2012.
    [15] HORD J.Cavitation in liquid cryogens:Ⅱ hydrofoil[R].NASA Contractor Report NASA CR-2156,1973.
    [16] HORD J.Cavitation in liquid cryogens:Ⅲ ogives[J].NASA Contractor Report NASA CR-2242,1973,.
    [17] SHI Suguo,WANG Guoyu.Numerical calculation of thermal effect on cavitation in cryogenic fluids[J].Chinese Journal of Mechanical of Engineering,2012,25(6):1176-1183.
    [18] CHEN Tairan,WANG Guoyu,HUANG Biao.Numerical study of thermodynamic effects on liquid nitrogen cavitating flows[J].Cryogenics,2015,70:21-27.
    [19] 黄彪.非定常空化流动数值计算模型研究及流动机理分析[D].北京:北京理工大学,2012.HUANG Biao.Physical and numerical investigation of unsteady cavitating flows[D].Beijing:Beijing Institute of Technology,2012.(in Chinese)
    [20] JI Bin,LUO Xianwu,PENG Xiaoxing,et al.Three-dimensional large eddy simulation andvorticity analysis of unsteady cavitation flow around a twisted hydrofoil[J].Journal of Hydrodynamics,2013,25(4):510-519.
    [21] 孔德才.通气超空化多相流动模型的研究[D].北京:北京理工大学,2005.KONG Decai.Numerical investigation on ventilation-air super cavitation multiphase flow[D].Beijing:Beijing Institute of Technology,2012.(in Chinese)
    [22] NICOUD F,DUCROS F.Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J].Flow Turbulence and Combustion,,1999,62(3):183-200.
    [23] KUBOTA A,KATO H,YAMAGUCHI H.A new modeling of cavitating flows:a numerical study of unsteady cavitation on a hydrofoil section[J].Journal of Fluid Mechanics,1992,240(1):59-56.
    [24] HOSANGADI A,AHUJA V.Numerical study of cavitation in cryogenic fluids[J].Journal of Fluids Engineering,2005,127(2):267-281.
  • 加载中
计量
  • 文章访问数:  619
  • HTML浏览量:  2
  • PDF量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-19
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回