留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境氧化物对EB-PVD热障涂层残余应力的影响

陈智 贾文斌 赵凯 黄红梅 方磊

陈智, 贾文斌, 赵凯, 黄红梅, 方磊. 环境氧化物对EB-PVD热障涂层残余应力的影响[J]. 航空动力学报, 2019, 34(4): 875-884. doi: 10.13224/j.cnki.jasp.2019.04.017
引用本文: 陈智, 贾文斌, 赵凯, 黄红梅, 方磊. 环境氧化物对EB-PVD热障涂层残余应力的影响[J]. 航空动力学报, 2019, 34(4): 875-884. doi: 10.13224/j.cnki.jasp.2019.04.017
Influence of CMAS on residual stresses of EB-PVDthermal barrier coating system[J]. Journal of Aerospace Power, 2019, 34(4): 875-884. doi: 10.13224/j.cnki.jasp.2019.04.017
Citation: Influence of CMAS on residual stresses of EB-PVDthermal barrier coating system[J]. Journal of Aerospace Power, 2019, 34(4): 875-884. doi: 10.13224/j.cnki.jasp.2019.04.017

环境氧化物对EB-PVD热障涂层残余应力的影响

doi: 10.13224/j.cnki.jasp.2019.04.017

Influence of CMAS on residual stresses of EB-PVDthermal barrier coating system

  • 摘要: 通过建立EB-PVD涂层的柱状晶模型,系统地研究了CMAS沉积和渗透对残余应力的影响。结果表明:CMAS的沉积和渗透产生了很大的面内、面外拉应力,导致垂直、水平裂纹的萌生;随着裂纹扩展,最终涂层发生剥落和分层失效。该失效主要发生在TC层表面下方、CMAS渗透交界处、陶瓷/黏结(TC/BC)界面附近。

     

  • [1] 薛召露,郭洪波,宫声凯,等.新型热障涂层陶瓷隔热层材料[J].航空材料学报,2018,38(2):10-20.XUE Zhaolu,GUO Hongbo,GONG Shengkai,et al.Novel ceramic materials for thermal barrier coatings[J].Journal of Aeronautical Materials,2018,38(2):10-20.(in Chinese)
    [2] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
    [3] CLARKE D R,OECHSNER M,PADTURE N P.Thermal-barrier coatings for more efficient gas-turbine engines[J].MRS Bulletin,2012,37(10):891-898.
    [4] SCHULZ U,LEYENS C,FRITSCHER K,et al.Some recent trends in research and technology of advanced thermal barrier coatings[J].Aerospace Science and Technology,2003,7(1):73-80.
    [5] 曹学强.热障涂层新材料和新结构[M].北京:科学出版社,2016.
    [6] 王铁军,范学领.热障涂层强度理论与检测技术[M].西安:西安交通大学出版社,2016.
    [7] KIM S S,LIU Y F,KAGAWA Y.Evaluation of interfacial mechanical properties under shear loading in EB-PVD TBCs by the pushout method[J].Acta Materialia,2007,55(11):3771-3781.
    [8] RENTERIA A F,SARUHAN B,SCHULZ U,et al.Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs[J].Surface and Coatings Technology,2006,201(6):2611-2620.
    [9] PENG Hui,WANG Lu,GUO Lei,et al.Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits[J].Progress in Natural Science:Materials International,2012,22(5):461-467.
    [10] MERCER C,FAULHABER S,EVANS A G,et al.A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration[J].Acta Materialia,2005,53(4):1029-1039.
    [11] EVANS A G,MUMM D R,HUTCHINSON J W,et al.Mechanisms controlling the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46(5):505-553.
    [12] YU Q M,CEN L.Residual stress distribution along interfaces in thermal barrier coating system under thermal cycles[J].Ceramics International,2017,43(3):3089-3100.
    [13] YANG L,LI H L,ZHOU Y C,et al.Erosion failure mechanism of EB-PVD thermal barrier coatings with real morphology[J].Wear,2017,392-393(1):99-108.
    [14] KARLSSON A M,HUTCHINSON J W,EVANS A G.A fundamental model of cyclic instabilities in thermal barrier systems[J].Journal of the Mechanics and Physics of Solids,2002,50(8):1565-1589.
    [15] 郝勇,齐红宇,马立强.高温氧化对EB-PVD热障涂层内部应力场分布影响的数值模拟[J].航空动力学报,2014,29(7):1520-1526.HAO Yong,QI Hongyu,MA Liqiang.Numerical simulation of effect of high temperature oxidation stress field distribution of EB-PVD thermal barrier coating[J].Journal of Aerospace Power,2014,29(7):1520-1526.(in Chinese)
    [16] 胡晓安,石多奇,庞学佳,等.某涡轮叶片热障涂层的寿命预测方法[J].航空动力学报,2018,33(1):48-53.HU Xiaoan,SHI Duoqi,PANG Xuejia,et el.Thermal barrier coating life prediction method for a turbine blade[J].Journal of Aerospace Power,2018,33(1):48-53.(in Chinese)
    [17] YU Q M,ZHOU H L,WANG L B.Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system[J].Ceramics International,2016,42(7):8338-8350.
    [18] YU Q M,HE Q.Effect of material properties on residual stress distribution in thermal barrier coatings[J].Ceramics International,2018,44(3):3371-3380.
    [19] KUMAR R,JORDAN E,GELL M,et al.CMAS behavior of yttrium aluminum garnet (YAG) and yttria-stabilized zirconia (YSZ) thermal barrier coatings[J].Surface and Coatings Technology,2017,327(1):126-128.
    [20] KRMER S,YANG J,LEVI C G.Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts[J].Journal of the American Ceramic Society,2008,91(2):576-583.
    [21] 苗文辉,王璐,郭洪波,等.CMAS环境下电子束物理气相沉积热障涂层的热循环行为及失效机制[J].复合材料学报,2012,29(5):76-82.MIAO Wenhui,WANG Lu,GUO Hongbo,et al.Thermal cycling behavior and associated failure mechanism of EB-PVD thermal barrier coatings with CMAS deposits[J].Acta Materiae Compositae Sinica,2012,29(5):76-82.(in Chinese)
    [22] 杨姗洁,彭徽,郭洪波.热障涂层在CMAS环境下的失效与防护[J].航空材料学报,2018,38(2):43-51.YANG Shanjie,PENG Hui,GUO Hongbo.Failure and protection of thermal barrier coating under CMAS attack[J].Journal of Aeronautical Materials,2018,38(2):43-51.(in Chinese)
    [23] 亢永霞,白宇,刘琨,等.热障涂层的 CMAS 腐蚀失效及对策研究[J].稀有金属材料与工程,2017,46(1):282-288.KANG Yongxia,BAI Yu,LIU Kun,et al.Corrosion failure mechanism of thermal barrier coatings after infiltration of CMAS deposits and countermeasure study[J].Rare Metal Materials and Engineering,2017,46(1):282-288.(in Chinese)
    [24] 何箐,汪瑞军,邹晗,等.不同结构 8YSZ 热障涂层对 CMAS 沉积物的防护作用[J].中国表面工程,2016,29(4):86-95.HE Qing,WANG Ruijun,ZOU Han,et al.Protectiveeffects of 8YSZ TBCs with different microstructures against CMAS deposits[J].China Surface Engineering,2016,29(4):86-95.(in Chinese)
    [25] 何箐,吴鹏,屈轶,等.一种新型 CMAS 耦合条件下热障涂层热循环实验方法[J].材料工程,2014(12):92-98.HE Qing,WU Peng,QU Yi,et al.A novel thermal cycling test method for thermal barrier coating under CMAS coupled condition[J].Journal of Materials Engineering,2014(12):92-98.(in Chinese)
    [26] 楼思余,单萧,赵晓峰.大气等离子喷涂热障涂层 CMAS 防护层成分及厚度优化[J].表面技术,2018,47(2):208-217.LOU Siyu,SHAN Xiao,ZHAO Xiaofeng.Composition and thickness optimization of anti-CMAS layer on air plasma sprayed thermal barrier coatings[J].Surface Technology,2018,47(2):208-217.(in Chinese)
    [27] LIU H,CAI J,ZHU J.CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers[J].Ceramics International,2018,44(1):452-458.
    [28] WU J,GUO H,GAO Y,et al.Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,2011,31(10):1881-1888.
    [29] SU L,CHEN X,WANG T J.Numerical analysis of CMAS penetration induced interfacial delamination of transversely isotropic ceramic coat in thermal barrier coating system[J].Surface and Coatings Technology,2015,280(1):100-109.
    [30] ZHANG G,FAN X,XU R,et al.Transient thermal stress due to the penetration of calcium-magnesium-alumino-silicate in EB-PVD thermal barrier coating system[J].Ceramics International,2018,44(11):12655-12663.
    [31] YANG L,YANG J,XIA J,et al.Characterization of the strain in the thermal barrier coatings caused by molten CaO-MgO-Al2O3-SiO2 using a digital image correlation technique[J].Surface and Coatings Technology,2017,322(1):1-9.
    [32] CHEN X.Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings[J].Surface and Coatings Technology,2006,200(11):3418-3427.
    [33] KRMER S,FAULHABER S,CHAMBERS M,et al.Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration[J].Materials Science and Engineering:A,2008,490(1/2):26-35.
    [34] CHEN X,WANG R,YAO N,et al.Foreign object damage in a thermal barrier system:mechanisms and simulations[J].Materials Science and Engineering:A,2003,352(1/2):221-231.
    [35] CHEN X,HUTCHINSON J W,EVANS A G.Simulation of the high temperature impression of thermal barrier coatings with columnar microstructure[J].Acta Materialia,2004,52(3):565-571.
    [36] SFAR K,AKTAA J,MUNZ D.Numerical investigation of residual stress fields and crack behavior in TBC systems[J].Materials Science and Engineering:A,2002,333(1/2):351-360.
    [37] RANJBAR-FAR M,ABSI J,MARIAUX G,et al.Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J].Materials and Design,2010,31(2):772-781.
    [38] RANJBAR-FAR M,ABSI J,SHAHIDI S,et al.Impact of the non-homogenous temperature distribution and the coatings process modeling on the thermal barrier coatings system[J].Materials and Design,2011,32(2):728-735.
    [39] AKTAA J,SFAR K,MUNZ D.Assessment of TBC systems failure mechanisms using a fracture mechanics approach[J].Acta Materialia,2005,53(16):4399-4413.
    [40] RSLER J,BKER M,AUFZUG K.A parametric study of the stress state of thermal barrier coatings:Part Ⅰ creep relaxation[J].Acta Materialia,2004,52(16):4809-4817.
    [41] BEDNARZ P.Finite element simulation of stress evolution in thermal barrier coating systems[M].Aachen,Germany:Rwth Aachen,2007.
  • 加载中
计量
  • 文章访问数:  627
  • HTML浏览量:  4
  • PDF量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-21
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回