留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋流燃烧室对固体燃料冲压发动机药柱表面传热以及燃速的影响

李唯暄 陈雄 周长省 MUSA Omer

李唯暄, 陈雄, 周长省, MUSA Omer. 旋流燃烧室对固体燃料冲压发动机药柱表面传热以及燃速的影响[J]. 航空动力学报, 2019, 34(4): 937-949. doi: 10.13224/j.cnki.jasp.2019.04.023
引用本文: 李唯暄, 陈雄, 周长省, MUSA Omer. 旋流燃烧室对固体燃料冲压发动机药柱表面传热以及燃速的影响[J]. 航空动力学报, 2019, 34(4): 937-949. doi: 10.13224/j.cnki.jasp.2019.04.023
Investigation on heat transfer of solid fuel surface and regression rate of solid fuel ramjet effect by swirl flow[J]. Journal of Aerospace Power, 2019, 34(4): 937-949. doi: 10.13224/j.cnki.jasp.2019.04.023
Citation: Investigation on heat transfer of solid fuel surface and regression rate of solid fuel ramjet effect by swirl flow[J]. Journal of Aerospace Power, 2019, 34(4): 937-949. doi: 10.13224/j.cnki.jasp.2019.04.023

旋流燃烧室对固体燃料冲压发动机药柱表面传热以及燃速的影响

doi: 10.13224/j.cnki.jasp.2019.04.023
基金项目: 预先研究项目

Investigation on heat transfer of solid fuel surface and regression rate of solid fuel ramjet effect by swirl flow

  • 摘要: 为研究旋流燃烧室对固体燃料冲压发动机(SFRJ)药柱表面传热以及燃速的影响,以高密度聚乙烯(HDPE)为燃料,对旋流和无旋工况下的固体燃料冲压发动机进行了连管实验研究,并且编制了二维轴对称湍流燃烧仿真程序,采用流固耦合传热的方法以及非定常时间推进方式,对实验工况进行了数值模拟。结果表明:①药柱表面热流密度对燃速有显著影响,在回流区与附着点处,药柱表面的对流换热能力要明显优于再发展区;②在旋流工况下,在离心力与切向速度的作用下,使热解产物在药柱表面附近区域停留时间更长,有助于热解产物的充分反应,并且明显增强药柱表面对流换热能力,与无旋工况相比,提高幅度可达100%,并且在旋流工况下发动机可更快建立自持燃烧;③通过实验研究发现,旋流的引入提高发动机的燃速有积极作用,增幅可达26%,但会导致固体燃料冲压发动机补燃室压强出现周期性振荡。

     

  • [1] NETZER D W.Model applications to solid-fuel ramjet combustion[J].Journal of Spacecraft and Rockets,1978,15(5):263-264.
    [2] NETZER D W.Modeling solid-fuel ramjet combustion[J].Journal of Spacecraft and Rockets,1977,14(12):762-766.
    [3] STEVENSON C A,NETZER D W.Primitive-variable model applications to solid-fuel ramjet combustion[J].Journal of Spacecraft and Rockets,1981,18(1):89-94.
    [4] METOCHIANAKIS M E,NETZER D W.Modeling solid-fuel ramjet combustion,including radiation to the fuel surface[J].Journal of Spacecraft and Rockets,1983,20(4):405-406.
    [5] MILSHTEIN T,NETZER D W.Three-dimensional,primitive-variable model for solidfuel ramjet combustion[J].Journal of Spacecraft and Rockets,1986,23(1):113-117.
    [6] NETZER D W,MILSHTEIN T.Three-dimensional,primitive-variable model for solidfuel ramjet combustion[R].Monterey,California:Naval Postgraduate School,1984.
    [7] LIOU T M,HWANG P W,LI Y C,et al.Flame stability analysis of turbulent non-premixed reacting flow in a simulated solid-fuel ramjet combustor[J].Journal of Mechanics,2002,18(1):43-51.
    [8] GONG Lunkun,CHEN Xiong,YANG Haitao,et al.Investigation on the effect of diaphragm on the combustion characteristics of solid-fuel ramjet[J].Acta Astronautica,2017,139:449-462.
    [9] LI Yichao,LI Renfu,LI Dinggen,et al.Combustion characteristics of a slotted swirl combustor:an experimental test and numerical validation[J].International Communications in Heat and Mass Transfer,2015,66:140-147.
    [10] ZHANG Jian,ZHU Chengkai.Simulation of swirling turbulent flow and combustion in a combustor[J].Numerical Heat Transfer,2009,55(5):448-464.
    [11] ZHANG Jian,CHEN Chunming.Simulation of turbulent reacting flow in a swirl combustor[J].Numerical Heat Transfer:Part A Applications,2008,53(6):605-624.
    [12] JING Jianping,LI Zhengqi,ZHU Qunyi,et al.Influence of the outer secondary air vane angle on the gas/particle flow characteristics near the double swirl flow burner region[J].Energy,2011,36(1):258-267.
    [13] GASSOUMI T,GUEDRI K,SAID R.Numerical study of the swirl effect on a coaxial jet combustor flame including radiative heat transfer[J].Numerical Heat Transfer:Part A Applications,2009,56(11):897-913.
    [14] NEMODA S,BAKIV,OKA S,et al.Experimental and numerical investigation of gaseous fuel combustion in swirl chamber[J].International Journal of Heat and Mass Transfer,2005,48(21):4623-4632.
    [15] 刘巍.固体燃料冲压发动机燃烧组织技术研究[D].长沙:国防科学技术大学,2010.LIU Wei.Research on the combustion technology of solid fuel ramjet[D].Changsha:National University of Defense Technology,2010.(in Chinese)
    [16] 刘巍,杨涛.固体燃料冲压发动机旋流燃烧特性数值研究[J].推进技术,2011,32(4):504-508.LIU Wei,YANG Tao.Numerical study on the swirl flow combustion characteristics of solid fuel ramjet[J].Journal of Propulsion Technology,2011,32(4):504-508.(in Chinese)
    [17] 刘巍,杨涛,程兴华,等.旋流对轴对称喷管性能影响的数值研究[J].航空动力学报,2010,25(3):709-712.LIU Wei,YANG Tao,CHENG Xinghua,et al.Numerical study of the swirl flow effects on the performance of axisymmetric nozzle[J].Journal of Aerospace Power,2010,25(3):709-712.(in Chinese)
    [18] 刘巍,杨涛.固体燃料冲压发动机旋流冷流流场数值模拟[J].航空动力学报,2009,24(3):711-716.LIU Wei,YANG Tao.Numerical simulation of cold swirl flow field for solid fuel ramjet[J].Journal of Aerospace Power,2009,24(3):711-716.(in Chinese)
    [19] DUESTERHAUS D A,HGL A.Measurements in a solid fuel ramjet combustion with swirl[R].AIAA-88-3045,1988.
    [20] CAMPBELL W H,Jr.An experimental investigation of the effects of swirling air flows on the combustion properties of a solid fuel ramjet motor[D].Calhoun:Naval Postgraduate School,1985.
    [21] MUSA O,CHEN Xiong,ZHOU Changsheng,et al.Effect of inlet conditions on swirling turbulent reacting flows in a solid fuel ramjet engine[J].Applied Thermal Engineering,2017,113:186-207.
    [22] MUSA O,CHEN Xiong,ZHOU Changsheng.Experimental and numerical investigation on the ignition and combustion stability in solid fuel ramjet with swirling flow[J].Acta Astronautica,2017,137:157-167.
    [23] KUO K K.Principles of Combustion[M].New York:John Wiley,1986.
    [24] 陈军,王栋,封锋.火箭发动机燃烧基础[M].北京:北京航空航天大学出版社,2015.
    [25] STOLIAROV S I,WALTERS R N.Determination of the heats of gasification of polymers using differential scanning calorimetry[J].Polymer Degradation and Stability,2008,93(2):422-427.
    [26] BIANCHI D,NASUTI F,ONOFRI M.Radius of curvature effects on throat thermochemical erosion in solid rocket motors[J].Journal of Spacecraft and Rockets,2015,52(2):320-330.
    [27] GASCOIN N,FAU G,GILLARD P,et al.Flash pyrolysis of high density polyethylene[R].AIAA-2013-3833,2013.
    [28] 王兰.超燃冲压发动机整机非结构网格并行数值模拟研究[D].四川 绵阳:中国空气动力研究与发展中心,2007.
    [29] KIM K H,KIM C,RHO O H.Methods for the accurate computations of hypersonic flows:Ⅰ AUSMPW+scheme[J].Journal of Computational Phyics,2001,174(1):38-80.
    [30] VIESER W,ESCH T,MENTER F.Heat transfer predictions using advanced two-equation turbulence models:CFX-VAL10/0602[R].Oxford:AEA Technology,2002.
    [31] 李唯暄,吕庆山,陈雄,等.旋流对固体燃料冲压发动机燃烧过程的影响[J].航空动力学报,2017,32(5):1250-1258.LI Weixuan,L Qingshan,CHEN Xiong,et al.Effect of swirl flows in combustion of solid fuel ramjet[J].Journal of Aerospace Power,2017,32(5):1250-125.(in Chinese)
    [32] DELLENBACK P A,METZGER D E,NEITZEL G P.Measurements in turbulent swirling flow through an abrupt axisymmetric expansion[J].AIAA Journal,1988,26(6):669-681.
    [33] EVANS J S,SCHEXNAYDERC J.Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames[J].AIAA Journal,1980,18(2):188-193.
    [34] LEHR H F.Experiment on shock-induced combustion[J].Astronautica Acta,1972,17(4/5):589-597.
    [35] 李唯暄.固体燃料冲压发动机旋流燃烧特性研究[D].南京:南京理工大学,2017.LI Weixuan.Research on combustion characteristics of solid fuel ramjet effect by swirl flow[D].Nanjing:Nanjing University of Science and Technology,2017.(in Chinese)
  • 加载中
计量
  • 文章访问数:  681
  • HTML浏览量:  2
  • PDF量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-29
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回