留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同淬熄结构下RQL燃烧室流场特性的数值研究

张亮 吉雍彬 葛冰 臧述升

张亮, 吉雍彬, 葛冰, 臧述升. 不同淬熄结构下RQL燃烧室流场特性的数值研究[J]. 航空动力学报, 2019, 34(8): 1688-1698. doi: 10.13224/j.cnki.jasp.2019.08.007
引用本文: 张亮, 吉雍彬, 葛冰, 臧述升. 不同淬熄结构下RQL燃烧室流场特性的数值研究[J]. 航空动力学报, 2019, 34(8): 1688-1698. doi: 10.13224/j.cnki.jasp.2019.08.007
Numerical study on flow field characteristics of RQL combustor under different quenching structures[J]. Journal of Aerospace Power, 2019, 34(8): 1688-1698. doi: 10.13224/j.cnki.jasp.2019.08.007
Citation: Numerical study on flow field characteristics of RQL combustor under different quenching structures[J]. Journal of Aerospace Power, 2019, 34(8): 1688-1698. doi: 10.13224/j.cnki.jasp.2019.08.007

不同淬熄结构下RQL燃烧室流场特性的数值研究

doi: 10.13224/j.cnki.jasp.2019.08.007

Numerical study on flow field characteristics of RQL combustor under different quenching structures

  • 摘要: 采用雷诺平均Navier-Stokes(RANS)方法对不同淬熄结构的富油/淬熄/贫油(RQL)燃烧室内定常掺混流动过程进行了数值模拟,分析了不同截面的流场结构,研究了动量通量比及淬熄孔排布方式的影响。结果表明:射流进入RQL燃烧室后发生偏转且偏转方向和旋流方向有关,回流区长度、穿透深度和高湍动能区随着动量通量比的增大而增加;当J≥80时,淬熄射流下游出现高湍动能区,逐渐与上游融为一体;当J≥120时,回流区的长度基本不再发生明显变化。此外,非中心对冲结构C3具有更大的高湍动能区,掺混更均匀。

     

  • [1] MOSIER S A,PIERCE R M.Advanced combustor systems for stationary gas turbine engines:Phase Ⅰ review and preliminary evaluation[R].Florida:US:Environmental Protection Agency,1980.
    [2] SAMUELSEN S.The gas turbine handbook[M].Morgantown,US:Department of Energy,Office of Fossil Energy,National Energy Technology Laboratory,2006.
    [3] 金义,何小民,蒋波.富油燃烧/快速淬熄/贫油燃烧(RQL)工作模式下驻涡燃烧室排放性能试验[J].航空动力学报,2011,26(5):1031-1036.JIN Yi,HE Xiaomin,JIANG Bo.Experimental study on emission performance of rich-burn quick-quench lean-burn (RQL) trapped-vortex combustor[J].Journal of Aerospace Power,2011,26(5):1031-1036.(in Chinese)
    [4] BLOMEYER M,KRAUTKREMER B,HENNECKE D K,et al.Mixing zone optimization of a rich-burn/quick-mix/lean-burn combustor[J].Journal of Propulsion and Power,1999,15(2):288-295.
    [5] OECHSLE V L,MONGIA H C,HOLDEMAN J D.Comparison of mixing calculations for reacting and non-reacting flows in a cylindrical duct[R].AIAA 1994-0865,1994.
    [6] LEONG M Y,SAMUELSEN G S,HOLDEMAN J D.Optimization of jet mixing into a rich,reacting crossflow[J].Journal of Propulsion and Power,2000,16(5):729-735.
    [7] LEONG M Y,SAMUELSEN G S.Jet mixing in a reacting cylindrical crossflow[R].AIAA 1995-3109,1995.
    [8] ZHU G,LAI M C,LEE T.Penetration and mixing of radial jets in neck-down cylindrical crossflow[J].Journal of Propulsion and Power,1995,11(2):252-260.
    [9] ZHU G,LAI M C.A parametric study of penetration and mixing of radial jets in necked-down cylindrical crossflow[R].AIAA 1992-309,1992.
    [10] SHIH T I P,NGUYEN H L,HOWE G W,et al.Simulation of mixing in the quick quench region of a rich burn-quick quench mix-lean burn combustor[R].AIAA 1991-0410,1991.
    [11] 吉雍彬,葛冰,毛荣海,等.富油/淬熄/贫油(RQL)燃烧室燃烧和排放特性的实验研究[J].推进技术,2017,38(6):1335-1342.JI Yongbin,GE Bing,MAO Ronghai,et al.Experimental study on combustion and emission characteristics of rich-burn/quench/lean-burm (RQL) combustor[J].Journal of Propulsion Technology,2017,38(6):1335-1342.(in Chinese)
    [12] 虞江鹏,吉雍彬,葛冰,等.RQL燃烧室流场特性研究[J].热能动力工程,2017,32(4):57-63.YU Jiangpeng,JI Yongbin,GE Bing,et al.Flow field characteristics of RQL combustor[J].Journal of Engineering for Thermal Energy and Power,2017,32(4):57-63.(in Chinese)
    [13] MOHAMMAD B,JENG S M,ANDAC M G.Influence of the primary jets and fuel injection on the aerodynamics of a prototype annular gas turbine combustor sector[J].ASME Paper GT2011-11505,2011.
    [14] GALEAZZO F C C,DONNERT G,CRDENAS C,et al.Computational modeling of turbulent mixing in a jet in crossflow[J].International Journal of Heat and Fluid Flow,2013(41):55-65.
    [15] TAUTSCHNIG G,HANER E,HIRSCH C,et al.Experimental and numerical investigation of confined jets in hot co-flow[J].ASME Paper GT2014-25843,2014.
    [16] NADA S A,FOUDA A,ELATTAR H F.Parametric study of flow field and mixing characteristics of outwardly injected jets into a crossflow in a cylindrical chamber[J].International Journal of Thermal Sciences,2016,100(102):185-201.
    [17] WALTERS D K,COKLJAT D.A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow[J].Journal of Fluids Engineering,2008,130(12):320-327.
    [18] AHRENS D,KOLB M,HIRSCH C,et al.NOx formation in a reacting premixed jet in hot cross flow[J].ASME Paper GT2014-26139,2014.
    [19] NAGAO T,MATSUNO S,HAYASHI A K.Fluid mixing of opposed jet flows in the rectangular duct[R].AIAA 2013-0872,2013.
  • 加载中
计量
  • 文章访问数:  518
  • HTML浏览量:  3
  • PDF量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-18
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回