Prediction of hybrid airfoil leading edge pressure distribution based on deep learning
-
摘要: 提出了一种基于深度学习的混合翼型前缘压力分布预测方法,通过对翼型几何特征提取、压力分布曲线的参数化,建立了卷积神经网络模型(CNN),并利用计算流体力学(CFD)的计算结果作为其训练样本,实现对混合翼型前缘压力分布的预测。结果表明:两种方法计算结果的拟合优度大于0.98,基于深度学习的计算方法耗时1.7 s,CFD方法耗时大于50 s,计算时间大大缩短。该方法能够在满足计算精度的条件下提高计算效率并可应用于其他的翼型设计过程。
-
关键词:
- 混合翼型 /
- 深度学习 /
- 卷积神经网络(CNN) /
- 参数化方法 /
- 压力分布
Abstract: A prediction model on the leading edge pressure distribution of the hybrid airfoil based on deep learning was proposed. A convolutional neural network model (CNN) was established on the basis of the geometric feature extraction of the hybrid airfoil and the parameterization of the pressure distribution curve. A group of hybrid airfoils with different trailing edges were analyzed by a verified CFD method. The CFD results were used as the training set of the CNN. Results show that the goodness of fit of the calculation results of the two methods exceeds 0.98. The proposed prediction method based on deep learning takes 1.7 s and CFD method takes more than 50 s, computation time is greatly reduced. The proposed method can improve the computational efficiency with satisfying the calculation accuracy and it can be applied to the design processes of other airfoils. -
[1] 易贤,朱国林,王开春,等.翼型积冰的数值模拟[J].空气动力学学报,2002,20(4):428-433.YI Xian,ZHU Guolin,WANG Kaichun,et al.Numerically simulating of ice accretion on airfoil[J].Acta Aerodynamics Sinica,2002,20(4):428-433.(in Chinese) [2] 钟国华,孙晓峰.基于浸入式边界方法的二维结冰机翼的数值模拟[J].航空动力学报,2009,24(8):1752-1758.ZHONG Guohua,SUN Xiaofeng.Numerically simulation of two dimension iced airfoil using immersed boundarymethod[J].Journal of Aerospace Power,2009,24(8):1752-1758.(in Chinese) [3] 张大林,陈维建.飞机机翼表面霜状冰结冰过程的数值模拟[J].航空动力学报,2004,19(1):137-141.ZHANG Dalin,CHEN Weijian.Numerically simulation of rime ice accretion process on airfoil[J].Journal of Aerospace Power,2004,19(1):137-141.(in Chinese) [4] CEBECI T,KAFYEKE F.Aircraft icing[J].Annual Review of Fluid Mechanics,2003,35:11-21. [5] KOOMULLIL R P,THOMPSON D S,SONI B K.Iced airfoil simulation using generalized grids[J].Applied Numerical Mathematics,2003,46(3/4):319-330. [6] PAN J,LOTH E.Reynolds-averaged Navier-Stokes simulations of airfoils and wings with ice shapes[J].Journal of Aircraft,2004,41(4):879-891. [7] 陈海,钱炜祺,何磊.基于深度学习的翼型气动系数预测[J].空气动力学学报,2018,36(2):294-299.CHEN Hai,QIAN Weiqi,HE Lei.Aerodynamic coefficient prediction of airfoils based on deep learning[J].Acta Aerodynamics Sinica,2018,36(2):294-299.(in Chinese) [8] SAEED F,SELIG M S,BRAGG M B.Design of subscale airfoils with full-scale leading edges for ice accretion testing[J].Journal of Aircraft,1997,34(1):94-100. [9] SAEED F,SELIG M S,BRAGG M B.Hybrid airfoil design method to simulate full-scale ice accretion throughout a given a range[J].Journal of Aircraft,1998,35(2):233-239. [10] SAEED F,SELIG M S,BRAGG M B.Hybrid airfoil design procedure validation for full-scale ice accretion simulation[J].Journal of Aircraft,1999,36(5):769-776. [11] SAEED F.Hybrid airfoil design methods for full-scale ice accretion simulation[D].Champaign-Urbana,US:University of Illinois at Urbana-Champaign,1999. [12] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,US:IEEE Computer Society,2016:770-778. [13] ANDRES E,SALCEDO-SANZ S,MONGE F,et al.Efficient aerodynamic design through evolutionary programming and support vector regression algorithms[J].Expert Systems with Applications,2012,39(12):10700-10708. [14] SANTOS M C,MATTOS B S,GIRARDI R M.Aerodynamic coefficient Prediction of airfoils using neural networks[R].AIAA 2008-887,2008. [15] YOSINSKI J,CLUNE J,BENGIO Y,et al.How transferable are features in deep neural networks[C]∥Advances in Neural Information Processing Systems 27 (NIPS 2014).Montreal,Canada:NIPS Foundation,2014:3320-3328. [16] 许可.卷积神经网络在图像识别上的应用的研究[D].杭州:浙江大学,2012.XU Ke.Study of convolutional Neural Network Applied on Image Recognition[D].Hangzhou:Zhejiang University,2012.(in Chinese) [17] 尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,41(1):48-59.YIN Baocai,WANG Wentong,WANG Lichun.Review of deep learning[J].Journal of Beijing University Of Technology,2015,41(1):48-59.(in Chinese) [18] 欧阳洁,聂玉峰,车刚明,等.数值分析[M].北京:高等教育出版社,2009. [19] 浦剑.多任务学习算法研究[D].上海:复旦大学,2013.PU Jian.Research on multitasking learning algorithm[D].Shanghai:Fudan University,2013.(in Chinese) [20] 袁春兰,熊宗龙,周雪花,等.基于Sobel算子的图像边缘检测研究[J].激光与红外,2009,39(1):85-87.YUAN Chunlan,XIONG Zonglong,ZHOU Xuehua,et al.Study of infrared image edge detection based on sobel operator[J].Laser and Infrared,2009,39(1):85-87.(in Chinese) [21] 李阳,张亚非,徐玉龙,等.基于深度特征与非线性降维的图像数据集可视化方法[J].计算机应用研究,2017,34(2):621-625.LI Yang,ZHANG Yafei,XU Yulong,et al.Image dataset visualization method based on deep features and nonlinear dimension reduction[J].Computer Applications and Research,2017,34(2):621-625.(in Chinese) [22] 郜丽鹏,郑辉.基于PReLUs-Softplus非线性激励函数的卷积神经网络[J].沈阳工业大学学报,2018,40(1):54-59.
GAO Lipeng.ZHENG Hui.Convolution neural network based on PreLUs-Softplus nonlinear excitation function[J].Journal of Shenyang University of Technology,2018,40(1):54-59.(in Chinese)[23] BASALYGA G,SALINAS E.When response variability increases neural network robustness to synaptic noise[J].Neural Computation,2014,18(6):1349-1379. [24] HARRIS C.Two-dimensional aerodynamic characteristics of the NACA0012 airfoil in the Langley 8-foot transonic pressure tunnel[R].NASA TM-81927,1981.
点击查看大图
计量
- 文章访问数: 619
- HTML浏览量: 19
- PDF量: 455
- 被引次数: 0