留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风扇叶片飞失下的结构降载机理

虞磊 耿景艳 曹冲 万召 李百洋 王卫国

虞磊, 耿景艳, 曹冲, 万召, 李百洋, 王卫国. 风扇叶片飞失下的结构降载机理[J]. 航空动力学报, 2019, 34(8): 1788-1794. doi: 10.13224/j.cnki.jasp.2019.08.019
引用本文: 虞磊, 耿景艳, 曹冲, 万召, 李百洋, 王卫国. 风扇叶片飞失下的结构降载机理[J]. 航空动力学报, 2019, 34(8): 1788-1794. doi: 10.13224/j.cnki.jasp.2019.08.019
Load reducing mechanism under fan blade out event[J]. Journal of Aerospace Power, 2019, 34(8): 1788-1794. doi: 10.13224/j.cnki.jasp.2019.08.019
Citation: Load reducing mechanism under fan blade out event[J]. Journal of Aerospace Power, 2019, 34(8): 1788-1794. doi: 10.13224/j.cnki.jasp.2019.08.019

风扇叶片飞失下的结构降载机理

doi: 10.13224/j.cnki.jasp.2019.08.019

Load reducing mechanism under fan blade out event

  • 摘要: 利用简化的转子有限元分析模型,从转子临界转速、支点动态载荷响应和转子轴心轨迹等方面进行了有无降载设计的对比分析,研究了风扇叶片飞失下的结构降载机理。结果表明:由于1#支点的熔断设计,低压转子支承由3个支点变为2个支点,风扇振型的临界转速降低,使得风扇转子运行在超临界转速上,轴心轨迹半径减小,从而降低高转速下的载荷响应,同时该机理研究采用的方法可用于熔断结构载荷阀值范围的确定以及其降载效果的评估。

     

  • [1] European Aviation Safety Agency.Certification specifications and acceptable means of compliance for large aeroplanes:CS-25 Amendment 22[S].Cologne,Germany:European Aviation Safety Agency,2018:78-79.
    [2] Department of Transportation Federal Aviation Administration.Airworthiness standards:Part 33 aircraft engines:federal aviation regulation[S].Washington:Federal Aviaion Administration,1983:97-449.
    [3] HUSBAND J B.Developing an efficient FEM structural simulation of a fan blade off test in a turbo-fan jet engine[D].Saskatchewan,Canada:University of Saskatchewan,2007.
    [4] DZENAN H.Mechanical loads on a turbofan engine structure at blade-off[D].Lulea,Sweden:Lulea University of Technology,2009.
    [5] SINHA S K,DORBALA S.Dynamic loads in the fan containment structure of a turbofan engine[J].Journal of Aerospace Engineering,2009,22(3):260-269.
    [6] 洪杰,郝勇,张博,等.叶片丢失激励下整机力学行为及其动力特性[J].航空发动机,2014,40(2):19-23.HONG Jie,HAO Yong,ZHANG Bo,et al.Mechanical behaviors and dynamic characteristics of turbofan engine due to fan blade off[J].Aeroengine,2014,40(2):19-23.(in Chinese)
    [7] 马艳红,梁智超,王桂华,等.航空发动机叶片丢失问题研究综述[J].航空动力学报,2016,31(3):513-526.MA Yanhong,LIANG Zhichao,WANG Guihua,et al.Review on the blade loss of aeroengine[J].Journal of Aerospace Power,2016,31(3):513-526.(in Chinese)
    [8] 刘璐璐,赵振华,陈伟,等.叶片丢失后发动机整机响应模拟试验与仿真[J].航空动力学报,2018,33(2):290-298.LIU Lulu,ZHAO Zhenhua,CHEN Wei,et al.Simulated test and numercial simulation of aero-engine whole engine response during blade out event[J].Journal of Aerospace Power,2018,33(2):290-298.(in Chinese)
    [9] DALY M,GUNSTON B.IHS Jane's aero-engines 2013-2014[M].UK:IHS Global Limited,2013:455.
    [10] JADCZAK E J,SEINE L M,MAGRET C,et al.Uncoupling system for an aircraft turbojet engine rotary shaft:US8646978B2[P].2014-02-11.
    [11] WALLACE M.Bearing support:EP2397710A2[P].2011-12-21.
    [12] PLONA D G.Bearing arrangement for a rotating shaft turbine engine equipped with such an arrangement:US7909514B2[P].2011-03-22.
    [13] DOERFLEIN T M,WILTON S A,ALLMON B L.Method and apparatus for supporting rotor assemblies during unbalances:US 6783319B2[P].2004-08-31.
    [14] KASTL J A.Fan decoupling fuse:US6402469B1[P].2002-06-11.
    [15] KASTL J A.Bearing support fuse: US6447248B1[P].2002-09-10.
    [16] DUYN K G.Method and apparatus for supporting a rotatable shaft within a gas turbine engine:US6082959[P].2000-07-04.
    [17] HEIDARI M,CARLSON D L,SINHA S K,et al.An efficient multi-disciplinary simulation of engine fan-blade out event using MD nastran[R].AIAA-2008-2333,2008.
    [18] Department of Transportation Federal Aviation Administration.Federal aviation regulation advisory circulars:AC 25.362-1 engine failure loads[S].Washington:Federal Aviation Administration,2014:1-8.
    [19] 顾家柳.转子动力学[M].北京:国防工业出版社,1985:24-27.
  • 加载中
计量
  • 文章访问数:  459
  • HTML浏览量:  1
  • PDF量:  369
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-24
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回