留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贫预混燃烧室化学反应器网络模型建模及不确定性分析

母滨 雷福林

母滨, 雷福林. 贫预混燃烧室化学反应器网络模型建模及不确定性分析[J]. 航空动力学报, 2019, 34(10): 2108-2119. doi: 10.13224/j.cnki.jasp.2019.10.004
引用本文: 母滨, 雷福林. 贫预混燃烧室化学反应器网络模型建模及不确定性分析[J]. 航空动力学报, 2019, 34(10): 2108-2119. doi: 10.13224/j.cnki.jasp.2019.10.004
MU Bin, LEI Fulin. Modeling and uncertainty analysis of chemical reactor network model in lean premixed combustion chamber[J]. Journal of Aerospace Power, 2019, 34(10): 2108-2119. doi: 10.13224/j.cnki.jasp.2019.10.004
Citation: MU Bin, LEI Fulin. Modeling and uncertainty analysis of chemical reactor network model in lean premixed combustion chamber[J]. Journal of Aerospace Power, 2019, 34(10): 2108-2119. doi: 10.13224/j.cnki.jasp.2019.10.004

贫预混燃烧室化学反应器网络模型建模及不确定性分析

doi: 10.13224/j.cnki.jasp.2019.10.004
基金项目: 国家自然科学基金(91541123); 中国科学院国际合作局对外合作重点项目(182211KYSB20160039);中国科学院青年创新促进会项目(2017184)

Modeling and uncertainty analysis of chemical reactor network model in lean premixed combustion chamber

  • 摘要: 基于CFD三维数值模拟结果的化学反应器(CRN)网络模型方法具有快速预估燃烧室NOx排放的特点。研究通过CFD数值模拟手段获得了贫预混燃烧室流场、温度场等特征分布,基于燃料空气掺混特性、速度场、温度场、OH分布以及达姆科勒数,燃烧室被离散划分为预热区、火焰锋面区、火焰过渡区、后火焰区、中心回流区以及角回流区,建立了复杂的CRN模型表征燃烧室内部的流动特征和火焰结构。以贫预混燃烧器为对象,与实验结果进行了对比验证。通过敏感性和不确定性分析获得了反应区域停留时间和烟气回流比例等关键参数对NOx排放的影响规律。结果表明:CFD-CRN混合方法更适用于在高当量比条件下贫预混燃烧室NOx排放的快速有效预测。在相同扰动强度的条件下,反应预热区域和火焰锋面区域的停留时间扰动对CRN模型预测NOx的生成量和稳定性影响更显著。CFD-CRN混合方法应明确在较高的绝热火焰温度条件下烟气回流比的准确性计算及其对NOx生成的显著影响。

     

  • [1] VENKATARAMAN K,LEWIS S E,NATARAJAN J,et al.F-class DLN technology advancements:DLN2.6+[R].ASME Paper 2011-GT-45373,2011.
    [2] KUNDU A,KLINGMANN J,SUBASH A A,et al.Experimental and numerical investigation of a prototype low NOx gas turbine burner[R].ASME Paper 2016-GT-59592,2016.
    [3] TANIMURA S,NOSE M,ISHIZAKA K,et al.Advanceddry low NOx combustor for mitsubishi g class gas turbines[R].ASME Paper 2008-GT-50819,2008.
    [4] YOUSEFIAN S,BOURQUE G,MONAGHAN R F D,et al.Review of hybrid emissions prediction tools and uncertainty quantification methods for gas turbine combustion systems[R].ASME Paper 2017-GT-64271,2017.
    [5] HIRANO K,NONAKA Y,KINOSHITA Y,et al.Large-eddy simulation in an industrial gasturbine combustor for NOx prediction[R].ASME Paper 2012-GT-68925,2012.
    [6] NOVOSSELOV I V,MALTE P C,YUAN S,et al.Chemical reactor network application to emissions prediction for industial dle gas turbine[R].ASME Paper 2006-GT-90282,2006.
    [7] PARK J,NGUYEN T H,JOUNG D,et al.Prediction of NOx and co emissions from an industrial lean-premixed gas turbine combustor using a chemical reactor network model[J].Energy and Fuels,2013,27(3):1643-1651.
    [8] LEE D,PARK J,LEE M.A simulation for prediction of nitrogen oxide emissions in lean premixed combustor[J].Journal of Mechanical Science and Technology,2011,25(7):1871-1878.
    [9] LIU F Q,ZHANG K Y,LIU C X,et al.Numerical and experimental investigation on emission performance of a fuel staged combustor[J].Science China:Technological Sciences,2014,57(10):1941-1949.
    [10] 杨小龙,崔玉峰,徐纲,等.燃气轮机燃烧室化学反应器网络模型研究[J].工程热物理学报,2009,30(9):1585-1588.YANG Xiaolong,CUI Yufeng,XU Gang,et al.Chemical reactor network approach for a gas turbine combustor[J].Journal of Engineering Thermophysics,2009,30(9):1585-1588.(in Chinese)
    [11] WANG Hanlin,LEI Fulin,SHAO Weiwei,et al.Experimental and numerical studies of pressure effects on syngas combustor emissions[J].Applied Thermal Engineering,2016,102:318-328.
    [12] DRENNAN S A,SHELBURN A F,NAIK C V,et al.Flow field derived equivalent reactor networks for accurate chemistry simulation in gas turbine combustors[R].ASME Paper 2009-GT-59861,2009.
    [13] 刘闯,李鹏飞,刘勇,等.低排放燃烧室化学反应器网络模型的参数化[J].航空发动机,2016,42(2):11-16.LIU Chuang,LI Pengfei,LIU Yong,et al.Parameterized chemical reactor networks models of low-emissioncombustor[J].Aeroengine,2016,42(2):11-16.(in Chinese)
    [14] 马存祥,邢力,徐华胜.基于化学反应网络模型法的低排放燃烧室NOx模拟及预测[J].燃气涡轮试验与研究,2018,133(2):37-40.MA Cunxiang,XING Li,XU Huasheng.Simulation and prediction of NOx for a low emission combustor with chemical reaction networks model[J].Gas Turbine Experiment and Research,2018,133(2):37-40.(in Chinese)
    [15] INNOCENTI A,ANDREINI A,BERTINI D,et al.Turbulent flow-field effects in a hybrid cfd-crn model for the prediction of NOx and co emissions in aero-engine combustors[J].Fuel,2018,215:853-864.
    [16] TONI A D,HAYASHI T,SCHNEIDER P.Areactor network model for predicting NOx emissions in an industrial natural gas burner[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2013,35(3):199-206.
    [17] 王子叶,刘志坦,邵卫卫,等.天然气燃料轴向分级预混燃烧特性研究[J].燃气轮机技术,2018,31(4):32-39.WANG Ziye,LIU Zhitan,SHAO Weiwei,et al.Investigations of combustion characteristics of a natural gas axial fuel staging burner for gas turbine application[J].Gas Turbine Technology,2018,31(4):32-39.(in Chinese)
    [18] 邵卫卫,赵岩,刘艳,等.燃气轮机燃烧室预混燃烧器天然气燃料/空气掺混均匀性研究[J].中国电机工程学报,2017,37(3):795-802.SHAO Weiwei,ZHAO Yan,LIU Yan,et al.Investigation of fuel/air mixing uniformity in a natural gas premixed burner for gas turbine combustor applications[J].Proceedings of the CSEE,2017,37(3):795-802.(in Chinese)
    [19] 王翰林,雷福林,邵卫卫,等.合成气燃气轮机燃烧室CFD模拟的模型选择及优化[J].中国电机工程学报,2015,35(6):1429-1435.WANG Hanlin,LEI Fulin,SHAO Weiwei,et al.Screening and modification of CFD models for syngas turbine combustor[J].Proceedings of the CSEE,2015,35(6):1429-1435.(in Chinese)
    [20] WANG Hanlin,SHAO Weiwei,LEI Fulin,et al.Experimental and numerical studies ofpressure effects on syngas combustor liner temperature[J].Applied Thermal Engineering,2015,82:30-38.
    [21] CHOI M,SUNG Y,WON M,et al.Effect of fueldistribution on turbulence and combustion characteristics of a micro gas turbine combustor[J].Journal of Industrial and Engineering Chemistry,2017,48:24-35.
    [22] 康振亚,郑洪涛,贾翔羽,等.微型燃气轮机燃烧室预混结构性能研究及改进[J].燃气轮机技术,2013,26(1):21-26.KANG Zhenya,ZHENG Hongtao,JIA Xiangyu,et al.Research and improvement of performance of micro-turbine combustor premixing structure[J].Gas Turbine Technology,2013,26(1):21-26.(in Chinese)
    [23] 王翰林.压力对合成气燃气轮机燃烧室燃烧及排放特性的影响研究[D].北京:中国科学院,2016.WANG Hanlin.Investigation of pressure effects on combustion and emissioncharacteristics of syngas turbine combustor[D].Beijing:Chinese Academy of Sciences,2016.(in Chinese)
    [24] HACKNEY R,SADASIVUNI S K,ROGERSON J W,et al.Predictive emissions monitoring system for small siemens dry low emissions combustors:validation and application[R].ASME Paper 2016-GT-57656,2016.
    [25] ZHOU B,BRACKMANN C,WANG Z K,et al.Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames:scalar distributions and correlations[J].Combustion and Flame,2017,175:220-236.
    [26] NGUYEN T H.Chemical reactor network application to predict the emission of nitrogen oxides in an industrial combustion chamber[J].Combustion Explosion and Shock Waves,2017,53(4):406-410.
    [27] BRAGG S L.Application of reaction rate theory to combustion chamber analysis[C]//Aeronautical Research Council.London:Ministry of Defense,1953:1629-1633.
    [28] COLORADO A,MCDONELL V.Emissions and stability performance of a low-swirl burner operated on simulated biogas fuels in a boiler environment[J].Applied Thermal Engineering,2018,130:1507-1519.
    [29] 张环.平行射流柔和燃烧器燃烧特性研究[D].北京:中国科学院,2018.ZHANG Huan.Investigation of combustion characteristics of parallel jets mild burner[D].Beijing:Chinese Academy of Sciences,2018.(in Chinese)
    [30] MONDAL S,DATTA A,SARKAR A.Influence of side wall expansion angle and swirl generator on flow pattern in a model combustor calculated with k-ε model[J].International Journal of Thermal Sciences,2004,43(9):901-914.
  • 加载中
计量
  • 文章访问数:  449
  • HTML浏览量:  4
  • PDF量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回