留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光诱导荧光的高速飞行粒子低温段测温方法

周江宁 殷一民 郭秋亭

周江宁, 殷一民, 郭秋亭. 基于激光诱导荧光的高速飞行粒子低温段测温方法[J]. 航空动力学报, 2019, 34(12): 2642-2647. doi: 10.13224/j.cnki.jasp.2019.12.013
引用本文: 周江宁, 殷一民, 郭秋亭. 基于激光诱导荧光的高速飞行粒子低温段测温方法[J]. 航空动力学报, 2019, 34(12): 2642-2647. doi: 10.13224/j.cnki.jasp.2019.12.013
ZHOU Jiangning, YIN Yimin, GUO Qiuting. Thermometry method for high speed flying particle at low temperature based on laser induced fluorescence technique[J]. Journal of Aerospace Power, 2019, 34(12): 2642-2647. doi: 10.13224/j.cnki.jasp.2019.12.013
Citation: ZHOU Jiangning, YIN Yimin, GUO Qiuting. Thermometry method for high speed flying particle at low temperature based on laser induced fluorescence technique[J]. Journal of Aerospace Power, 2019, 34(12): 2642-2647. doi: 10.13224/j.cnki.jasp.2019.12.013

基于激光诱导荧光的高速飞行粒子低温段测温方法

doi: 10.13224/j.cnki.jasp.2019.12.013
基金项目: 国家自然科学基金(91641118)

Thermometry method for high speed flying particle at low temperature based on laser induced fluorescence technique

  • 摘要: 针对当前高速飞行固体粒子在低温段测温困难的问题,提出了一种基于激光诱导荧光的固体测温方法来显示高速粒子飞行过程中的温度变化过程。使用掺杂罗丹明B染料的醋酸纤维粒子的600 nm荧光信号和激光的532 nm信号之比,能进一步排除激光光强波动对测温结果的干扰。对固体荧光粉末在20~80 ℃温度下的光谱学特征进行分析,研究发现:系统的荧光信号强度、温度灵敏度(80 ℃下温度系数为-0.012 5 ℃-1,20 ℃下温度系数为-0.037 9 ℃-1)、测量精度均随温度的下降显著上升,验证了该方法在低温段温度测量的应用潜力。基于该方法对高速气流下粒子撞靶的温度变化规律进行定性分析。

     

  • [1] ZHUANG Yaqing,CHEN Xiaomin,LUO Zhenghong,et al.CFD-DEM modeling of gas-solid flow and catalytic MTO reaction in a fluidized bed reactor[J].Computers and Chemical Engineering,2014,60:1-16.
    [2] FINCKE J R,SWANK W D,JEFFERY C L.Simultaneous measurement of particle size,velocity,and temperature in thermal plasmas[J].IEEE Transactions on Plasma Science,1990,18(6):948-957.
    [3] LIU F,STAGG B J,SNELLING D R,et al.Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame[J].International Journal of Heat and Mass Transfer,2006,49(3/4):777-788.
    [4] CHILDS P R N,GREENWOOD J R,LONG C A.Review of temperature measurement[J].Review of Scientific Instruments,2000,71(8):2959-2978.
    [5] DREIER T,CHRYSTIE R,ENDRES T,et al.Encyclopedia of analytical chemistry[M].New York:John Wiley and Sons,2016.
    [6] CHAMARTHY P,GARIMELLA S V,WERELEY S T.Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence[J].International Journal of Heat and Mass Transfer,2010,53(15/16):3275-3283.
    [7] SOMEYA S,LI Y,ISHII K,et al.Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive particles[J].Experiments in Fluids,2011,50(1):65-73.
    [8] SAKAUE H,MORITA K,TANAKA M,et al.Study of icing process using dual-luminescence imaging for aircraft-icing prevention[R].AIAA-2014-0929,2014.
    [9] SUTTON J A,FISHER B T,FLEMING J W.A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity[J].Experiments in Fluids,2008,45(5):869-881.
    [10] MISHRA Y N,ABOU N F,POLSTER S,et al.Thermometry in aqueous solutions and sprays using two-color LIF and structured illumination[J].Optics Express,2016,24(5):253552.1-253552.15.
    [11] GARCA-REVILLA S,FERNNDEZ J,ILLARRAMENDI M A,et al.Ultrafast random laser emission in a dye-doped silica gel powder[J].Optics Express,2008,16(16):12251-12263.
    [12] GAO Xiaoqing,HE Jiang,DENG Li,et al.Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles[J].Optical Materials,2009,31(11):1715-1719.
    [13] CELLINI F,PETERSON S D,PORFIRI M.Flow velocity and temperature sensing using thermosensitive fluorescent polymer seed particles in water[J].International Journal of Smart and Nano Materials,2017,8(4):232-252.
    [14] CHAROGIANNIS A,ZADRAZIL I,MARKIDES C N.Thermographic particle velocimetry (TPV) for simultaneous interfacial temperature and velocity measurements[J].International Journal of Heat and Mass Transfer,2016,97:589-595.
    [15] DEMTRDER W.Laser spectroscopy basic concepts and instrumentation,third edition[M].Berlin:Springer,2003.
    [16] NAGL S,STICH M I J,SCHAFERLING M,et al.Method for simultaneous luminescence sensing of two species using optical probes of different decay time,and its application to an enzymatic reaction at varying temperature[J].Analytical and Bioanalytical Chemistry,2009,393(4):1199-1207.
    [17] ZHANG Zhao,LIN Jun,TAO Yang,et al.A supersonic target jet mill based on the entrainment of annular supersonic flow[J].Review of Scientific Instruments,2018,89(8):085104.1-085104.6.
    [18] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
    [19] TAO Yang,LIN Jun,ZHANG Zhao,et al.Theoretical study of the effect of instrument parameters on the flow field of air-flow impacting based mechanochemicalSynthesis[J].International Journal of Chemical Engineering,2018,2018:1-6.
    [20] TAO Yang,LIN Jun,ZHANG Zhao,et al.Supersonic gas flow for preparation of ultrafine silicon powders and mechanochemical synthesis[J].Royal Society Open Science,2018,5(11):181432.1-181432.7.
  • 加载中
计量
  • 文章访问数:  323
  • HTML浏览量:  3
  • PDF量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-13
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回