留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三种燃料在亚燃冲压燃烧室中的高空点火特性

王建培 李娜 李江宁

王建培, 李娜, 李江宁. 三种燃料在亚燃冲压燃烧室中的高空点火特性[J]. 航空动力学报, 2020, 35(1): 81-87. doi: 10.13224/j.cnki.jasp.2020.01.010
引用本文: 王建培, 李娜, 李江宁. 三种燃料在亚燃冲压燃烧室中的高空点火特性[J]. 航空动力学报, 2020, 35(1): 81-87. doi: 10.13224/j.cnki.jasp.2020.01.010
WANG Jianpei, LI Na, LI Jiangning. High-altitude ignition characteristics of three fuels in ramjet combustor[J]. Journal of Aerospace Power, 2020, 35(1): 81-87. doi: 10.13224/j.cnki.jasp.2020.01.010
Citation: WANG Jianpei, LI Na, LI Jiangning. High-altitude ignition characteristics of three fuels in ramjet combustor[J]. Journal of Aerospace Power, 2020, 35(1): 81-87. doi: 10.13224/j.cnki.jasp.2020.01.010

三种燃料在亚燃冲压燃烧室中的高空点火特性

doi: 10.13224/j.cnki.jasp.2020.01.010
基金项目: 国家自然科学基金(91641205)

High-altitude ignition characteristics of three fuels in ramjet combustor

  • 摘要: 为评估三种液体燃料(航空煤油(RP-3)、高热氧化安定性燃油(RP-3+100)以及煤基合成油(LUAN))的点火特性,在一种小型亚燃冲压燃烧室中开展了高空点火试验。研究表明:三种燃料在所选的试验条件下,均可以实现可靠点火。随着入口气流温度、压力的增加,三种燃料的点火当量比范围增加;随着入口气流速度的增加,三种燃料的点火当量比范围减小。RP-3+100在不同条件下均具有最高的点火当量比范围,RP-3与LUAN的点火当量比范围较为接近。当入口气流温度、压力和速度发生改变时,RP-3+100点火当量比范围随外界参数改变的变化程度最低,RP-3点火当量比范围随外界参数改变的变化程度最高。

     

  • [1] 童升华.国产燃油理化性能与易燃性研究[D].南京:南京航空航天大学,2013. TONG Shenghua.Research on physicochemical characteristics and flammability of domestic fuels[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2013.(in Chinese)
    [2] 贺越康,史永刚,林科宇,等.喷气燃料热氧化安定性的研究综述[J].当代化工,2008,47(1):145-151. HE Yuekang,SHI Yonggang,LIN Keyu,et al.Review on thermal oxidation stability of jet fuel[J].Contemporary Chemical Industry,2008,47(1):145-151.(in Chinese)
    [3] 张冬梅,张怀安,曹文杰,等.喷气燃料热安定性对飞机发动机的影响[J].航空制造技术,2008(13):91-93. ZHANG Dongmei,ZHANG Huaian,CAO Wenjie,et al.Effects of the heat stability of the jet fuel on the aero engine[J].Aeronautical Manufacturing Technology,2008(13):91-93.(in Chinese)
    [4] 邹吉军,张香文,王莅,等.高密度液体碳氢燃料合成及应用进展[J].含能材料,2007,15(4):411-415. ZOU Jijun,ZHANG Xiangwen,WANG Li,et al.Progress on the synthesis and application of high-density liquid hydrocarbon fuels[J].Chinese Journal of Energetic Materials,2007,15(4):411-415.(in Chinese)
    [5] 潘伦,邓强,鄂秀天凤,等.高密度航空航天燃料合成化学[J].化学进展,2015,27(11):1531-1541. PAN Lun,DENG Qiang,E Xiutianfeng,et al.Synthesis chemistry of high-density fuels for aviation and aerospace propulsion[J].Progress in Chemistry,2015,27(11):1531-1541.(in Chinese)
    [6] 王鑫.航空替代燃料的曙光[J].中国民用航空,2009,98(2):64-67. WANG Xin.CTL/GTL synthetic fuel,the dawn of the aviation alternative fuels[J].China Civil Aviation,2009,98(2):64-67.(in Chinese)
    [7] MCNELIS N,BARTOLOTTA P.Revolutionary turbine accelerator (RTA) demonstrator[R].AIAA-2005-3250,2005.
    [8] BARTOLOTTA P A,MCNELIS B.High speed turbines:development of a turbine accelerator (RTA) for space access[R].AIAA-2003-6943,2003.
    [9] 王巍巍,郭琦,曾军,等.国外TBCC发动机发展研究[J].燃气涡轮试验与研究,2012,25(3):58-61. WANG Weiwei,GUO Qi,ZENG Jun,et al.TBCC technology research abroad[J].Gas Turbine Experiment and Research,2012,25(3):58-61.(in Chinese)
    [10] 朱志新,何小民,薛冲,等.涡轮基组合循环发动机超级燃烧室燃烧性能试验[J].航空动力学报,2015,30(9):2115-2221. ZHU Zhixin,HE Xiaomin,XUE Chong,et al.Experiment on performance of a hyper-combustor utilized in turbine based combined cycle engine[J].Journal of Aerospace Power,2015,30(9):2115-2221.(in Chinese)
    [11] 张冬青,宋文艳,柴政,等.组合循环发动机飞机/发动机性能一体化分析[J].航空动力学报,2017,32(10):2498-2508. ZHANG Dongqing,SONG Wenyan,CHAI Zheng,et al.Aircraft/engine performance integrated analysis on combined cycle engine[J].Journal of Aerospace Power,2017,32(10):2498-2508.(in Chinese)
    [12] FOSTER H H.Ignition-energy requirements in a single tubular combustor[R].National Advisory Committee for Aeronautics,NACA RM E51A24,1951.
    [13] FOSTER H H.STRAIGHT D M.Effect of fuel volatility characteristics on ignition-energy requirements in a turbojet combustor[R].National Advisory Committee for Aeronautics,NACA RM E52J21,1951.
    [14] ARMSTRONG J C,WILSTED H D.Investigation of several techniques for improving altitude-starting limits of turbojet engines[R].National Advisory Committee for Aeronautics,NACA RM E52I03,1952.
    [15] METZLER A J.Minimum ignition energies of six pure hydrocarbon fuels of the C2 and C6 series[R].National Advisory Committee for Aeronautics,NACA RM E52F27,1952.
    [16] METZLER A J.Minimum spark-ignition energies of twelve pure fuels at atmospheric and reduced pressure[R].National Advisory Committee for Aeronautics,NACA RM E53H31,1953.
    [17] SWETT C C.Spark ignition of flowing gases Ⅰ,energies to ignite propane-air mixtures in pressure range of 2 to 4 inches mercury absolute[R].National Advisory Committee for Aeronautics,NACA RM E9E17,1949.
    [18] SWETT C C.Spark ignition of flowing gases Ⅳ,theory of ignition of nonturbulent and turbulent flow using long-duration discharges[R].National Advisory Committee for Aeronautics,NACA RM E54F29a,1954.
  • 加载中
计量
  • 文章访问数:  365
  • HTML浏览量:  0
  • PDF量:  575
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-03
  • 刊出日期:  2020-01-28

目录

    /

    返回文章
    返回