留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多源不确定耦合下离心压气机叶轮气动稳健性

唐新姿 王喆 王效禹

唐新姿, 王喆, 王效禹. 多源不确定耦合下离心压气机叶轮气动稳健性[J]. 航空动力学报, 2020, 35(1): 196-204. doi: 10.13224/j.cnki.jasp.2020.01.023
引用本文: 唐新姿, 王喆, 王效禹. 多源不确定耦合下离心压气机叶轮气动稳健性[J]. 航空动力学报, 2020, 35(1): 196-204. doi: 10.13224/j.cnki.jasp.2020.01.023
TANG Xinzi, WANG Zhe, WANG Xiaoyu. Aerodynamic robustness of centrifugal compressor impeller under multi-source uncertainty coupling[J]. Journal of Aerospace Power, 2020, 35(1): 196-204. doi: 10.13224/j.cnki.jasp.2020.01.023
Citation: TANG Xinzi, WANG Zhe, WANG Xiaoyu. Aerodynamic robustness of centrifugal compressor impeller under multi-source uncertainty coupling[J]. Journal of Aerospace Power, 2020, 35(1): 196-204. doi: 10.13224/j.cnki.jasp.2020.01.023

多源不确定耦合下离心压气机叶轮气动稳健性

doi: 10.13224/j.cnki.jasp.2020.01.023
基金项目: 国家自然科学基金(51305377,51575466,51975504); 湖南省自然科学(株洲)联合基金项目(2018JJ4082); 湖南省教育厅重点项目(18A077); 教育部留学回国人员科研启动基金(教外司留[2015]1098号)

Aerodynamic robustness of centrifugal compressor impeller under multi-source uncertainty coupling

  • 摘要: 考虑制造误差与气动边界多源不确定耦合作用,以某离心压气机叶轮为研究对象,将数值计算方法、拉丁超立方试验、代理模型与蒙特卡洛方法相结合,分析几何设计变量与性能参数的相关程度,量化叶轮制造误差与转速波动的不确定性对压气机性能的影响程度,提出一种考虑多维异性不确定因素的离心压气机叶轮气动稳健优化设计方法。结果表明:在制造误差和转速不确定耦合作用下,压比波动幅度由350%增大至1414%;优化后叶轮气动稳健性增强,压比和效率均值分别提高69%和46%,标准差分别降低154%和184%。

     

  • [1] PAEPE W D,COPPITTERS D,ABRAHAM S.Robust operational optimization of a typical micro gas turbine[J].Energy Procedia,2019,158:5795-5803.
    [2] PANIZZA A,RUBINO D T,TAPINASSI L.Efficient uncertainty quantification of centrifugal compressor performance using polynomial chaos[R].ASME Paper GT2014-25081,2014.
    [3] WU T,CAO Y,YANG J.Analysis of the influence of blade’s machining error on aerodynamic performance of impeller based on NUMECA[J].Procedia CIRP,2015,27:155-162.
    [4] JAVED A,PECNIK R,BUIJTENEN J P V.Optimization of a centrifugal compressor impeller for robustness to manufacturing uncertainties[J].Journal of Engineering for Gas Turbines and Power,2016,138(11):1-11.
    [5] JU Y,ZHANG C.Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling[J].Chinese Journal of Mechanical Engineering,2016,29(2):301-314.
    [6] MEHRABI-KANDSAR S,MIRZAZADEH A,GHOLAMI-QADIKOLAEI A.The quality function deployment method under uncertain environment using evidential reasoning:a case study of compressor manufacturing [J].International Journal of System Assurance Engineering and Management,2017,8(2):1-18.
    [7] SUN Zhenzhong,ZOU Wangzhi,ZHENG Xinqian.Instability detection of centrifugal compressors by means of acoustic measurements[J].Aerospace Science and Technology,2018,82-83:628-635.
    [8] GOPINATHRAO N,BAGSHAW D,MABILAT C.Non-deterministic CFD simulation of a transonic compressor rotor[C]∥American Society of Mechanical Engineers Turbo Expo:Power for Land,Sea,and Air,Volume 6:Structures and Dynamics.Orlando,US:ASME,2009,1125-1134.
    [9] SESHADRI P,PARKS G,JARRETT J.Towards robust design of axial compressors with uncertainty quantification[R].AIAA 2013-1815,2013.
    [10] 唐新姿,王喆,肖鹏,等.气动边界不确定条件下离心压气机叶轮优化设计[J].机械科学与技术,2019,38(6):970-976. TANG Xinzi,WANG Zhe,XIAO Peng,et al.Optimal design of centrifugal compressor impeller under uncertain aerodynamic boundary[J].Machanical Science and Technology for Aerospace Engineering,2019,38(6):970-976.(in Chinese)
    [11] 高丽敏,蔡宇桐,徐浩亮,等.压气机叶片加工误差影响不确定分析[J].航空动力学报,2017,32(9):2253-2259. GAO Limin,CAI Yutong,XU Haoliang,et al.Uncertainty analysis of machining error influence of compressor blade[J].Journal of Aerospace Power,2017,32(9):2253-2259.(in Chinese)
    [12] 傅珏,蒋伟,柳一鸣,等.叶顶间隙几何不确定性对离心叶轮气动性能的影响[J].西安交通大学学报,2018,52(11):51-57. FU Jue,JIANG Wei,LIU Yiming,et al.Influence of tip clearance geometrical uncertainties on the aerodynamic performance of centrifugal impeller[J].Journal of Xi’an Jiaotong University,2018,52(11):51-57.(in Chinese)
    [13] HATHAWAY M D,CHRISS R M,STRAZISAR A J,et al.Laser anemometer measurements of the three-dimensional rotor flow field in the NASA low-speed centrifugal compressor [R].Washington DC:NASA,1995.
    [14] KRAIN H,HOFFMANN W.Verification of an impeller design by laser measurements and 3D-viscous flow calculations[R].New York:American Society of Mechanical Engineers,1989.
    [15] 苗森春,杨军虎,王晓晖,等.基于神经网络-遗传算法的液力透平叶片型线优化[J].航空动力学报,2015,30(8):1918-1925. MIAO Senchun,YANG Junhu,WANG Xiaohui,et al.Blade pattern optimization of the hydraulic turbine based on neural network and genetic algorithm[J].Journal of Aerospace Power,2015,30(8):1918-1925.(in Chinese)
    [16] LEE H,LEE D J,KWON H.Development of an optimized trend kriging model using regression analysis and selection process for optimal subset of basic functions[J].Aerospace Science and Technology,2018,77:273-285.
    [17] 韩忠华.Kriging模型及代理优化算法研究进展[J].航空学报,2016,37(11):3197-3225. HAN Zhonghua.Research progress of Kriging model and agent optimization algorithm[J].Acta Aeronautica et Astronautica Sinica,2016,37(11):3197-3225.(in Chinese)
    [18] 罗明,左志涛,李弘扬,等.基于BP人工神经网络的离心压气机叶轮多目标优化设计方法[J].航空动力学报,2016,31(10):2424-2431. LUO Ming,ZUO Zhitao,LI Hongyang,et al.Multi-objective optimization design of centrifugal compressor impeller based on BP artificial neural network[J].Journal of Aerospace Power,2016,31(10):2424-2431.(in Chinese)
  • 加载中
计量
  • 文章访问数:  303
  • HTML浏览量:  4
  • PDF量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-29
  • 刊出日期:  2020-01-28

目录

    /

    返回文章
    返回