留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛合金齿轮LPES法表面强化的电场与流场

陈飞飞 卢文壮 陈蒙

陈飞飞, 卢文壮, 陈蒙. 钛合金齿轮LPES法表面强化的电场与流场[J]. 航空动力学报, 2020, 35(5): 928-937. doi: 10.13224/j.cnki.jasp.2020.05.004
引用本文: 陈飞飞, 卢文壮, 陈蒙. 钛合金齿轮LPES法表面强化的电场与流场[J]. 航空动力学报, 2020, 35(5): 928-937. doi: 10.13224/j.cnki.jasp.2020.05.004
CHEN Feifei, LU Wenzhuang, CHEN Meng. Electric field and flow field of LPES surface strengthening of titanium alloy gear[J]. Journal of Aerospace Power, 2020, 35(5): 928-937. doi: 10.13224/j.cnki.jasp.2020.05.004
Citation: CHEN Feifei, LU Wenzhuang, CHEN Meng. Electric field and flow field of LPES surface strengthening of titanium alloy gear[J]. Journal of Aerospace Power, 2020, 35(5): 928-937. doi: 10.13224/j.cnki.jasp.2020.05.004

钛合金齿轮LPES法表面强化的电场与流场

doi: 10.13224/j.cnki.jasp.2020.05.004
基金项目: 南京航空航天大学直升机传动技术国家重点实验室自主项目基金(HTL-A-19K04)

Electric field and flow field of LPES surface strengthening of titanium alloy gear

  • 摘要: 针对TC4钛合金齿轮复杂曲面液相等离子体电解渗透(LPES)表面强化放电困难的问题,基于仿真分析和实验验证的方法,建立了齿轮表面强化系统仿真模型,进行了强化系统电场和流场仿真,确定了齿轮复杂表面放电机理,研究了电极系统参数和入口流速对强化层形成的影响。结果表明:齿轮复杂表面放电困难的根本原因在于电场的分布不均。采用啮合形阳极时的电场和强化层均匀性较好。电极距离过小容易造成强化系统的短路,过大时会降低强化层的均匀性和厚度。合理的系统电解液流速对放电的稳定性和强化层的形成均具有重要的意义。相较于未处理时的基体,强化后的齿轮表面耐磨性有了明显提升。

     

  • [1] 刘奇先,刘杨,高凯.钛合金的研究进展与应用[J].航天制造技术,2011(4):45-55. LIU Qixian,LIU Yang,GAO Kai.Research progress and application of titanium alloys[J].Aerospace Manufacturing Technology,2011(4):45-55.(in Chinese)
    [2] BOYER R R.An overview on the use of titanium in the aerospace industry[J].Materials Science and Engineering A,1996,213(1/2):103-114.
    [3] PANG J,LU W Z,LIU W,et al.Diffusion of carbon and nitrogen in TC4 titanium alloy plasma electrolytic saturation[J].Chemical Physics,2018,505:12-18.
    [4] 罗秋生,李世峰,裴会平.航空发动机钛火预防技术研究的进展[J].航空动力学报,2012,27(12):2763-2768. LUO Qiusheng,LI Shifeng,PEI Huiping.Progress in titanium fire resistant technology for aero-engine[J].Journal of Aerospace Power,2012,27(12):2763-2768.(in Chinese)
    [5] 陈纪民.不同材质的齿轮发展现状[J].热加工工艺,2013,42(12):36-40. CHEN Jimin.Research status of gear made with different material[J].Hot Working Technology,2013,42(12):36-40.(in Chinese)
    [6] WEI Y,LI H,GAO H.Gear failure forms and processing technology improvement[J].Applied Mechanics and Materials,2013,340:17-20.
    [7] CHEN F F,YU S X,LU W Z,et al.Effect of rare earth elements on plasma electrolytic carbonitriding of Ti-6Al-4V alloy[J].Materials Science and Technology,2019,35(18):2275-2283.
    [8] DONG H,BLOYCE A,MORTON P H,et al.Surface engineering to improve tribological performance of Ti-6Al-4V[J].Surface Engineering,1997,13(5):402-406.
    [9] BELKIN P N,BORISOV A M,KUSMANOV S A.Plasma electrolytic saturation of titanium and its alloys with light elements[J].Journal of Surface Investigation:X-ray,Synchrotron and Neutron Techniques,2016,10(3):516-535.
    [10] 李杰,沈德久,王玉林,等.液相等离子体电解渗透技术[J].金属热处理,2005,30(9):63-67. LI Jie,SHEN Dejiu,WANG Yulin,et al.Plasma electrolytic saturation technique in solution[J].Heat Treatment of Metals,2005,30(9):63-67.(in Chinese)
    [11] SKAKOV M,KURBANBEKOV S,SCHEFFLER M,et al.Modification of stainless steels surface layers by nitriding and carbonitriding[J].Advanced Materials Research,2013,712/713/714/715(1):12-16.
    [12] 田占军,李杰,沈德久,等.液相等离子体电解渗碳、渗氮及其碳氮共渗技术[J].电镀与涂饰,2006,25(2):53-56. TIAN Zhanjun,LI Jie,SHEN Dejiu,et al.Liquid phase plasma electrolytic carburizing,nitriding,carbonitriding technique[J].Electroplating and Finishing,2006,25(2):53-56.(in Chinese)
    [13] LI X M,HAN Y.Mechanical properties of Ti(C0.7N0.3) film produced by plasma electrolytic carbonitriding of Ti6Al4V alloy[J].Applied Surface Science,2008,254(20):6350-6357.
    [14] DONG Y X,CHEN Y S,CHEN Q,et al.Characterization and blood compatibility of TiCxN1-x hard coating prepared by plasma electrolytic carbonitriding[J].Surface and Coatings Technology,2007,201(21):8789-8795.
    [15] 武立胜,吕新生,张晔,等.基于Fluent连杆模具电解加工过程的三维流场分析[J].机械科学与技术,2011,30(9):1443-1445. WU Lisheng,L Xinsheng,ZHANG Ye,et al.Fluent based numerical simulation of three-dimensional flow fieldof electrochemical machining for a connecting rod mold[J].Mechanical Science and Technology for Aerospace Engineering,2011,30(9):1443-1445.(in Chinese)
    [16] 崔庆忠,邵文英,王风云.不同温度下水-甲酰胺体系的密度与粘度[J].华东工学院学报,1992,65(5):88-91. CUI Qingzhong,SHAO Wenying,WANG Fengyun.Densities and viscosities of H2O-HCONH2 mixtures at different temperatures[J].Journal of East China Institute of Technology,1992,65(5):88-91.(in Chinese)
    [17] YEROKHIN A L,NIE X,LEYLAND A,et al.Plasma electrolysis for surface engineering[J].Surface and Coatings Technology,1999,122(2/3):73-93.
    [18] SHADRIN S Y,ZHIROV A V,BELKIN P N.Formation regularities of gaseous vapour plasma envelope in electrolyzer[J].Surface Engineering and Applied Electrochemistry,2016,52(1):110-116.
    [19] 乔宝蓉,黄洁雯,樊新民,等.等离子体电解处理中工件表面温度计算与测量[J].材料热处理学报,2015,36(7):241-244.
  • 加载中
计量
  • 文章访问数:  385
  • HTML浏览量:  4
  • PDF量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-25
  • 刊出日期:  2020-05-28

目录

    /

    返回文章
    返回