留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于液氮冷源的液态甲烷过冷加注工艺

陈强 孙庆国 王天祥

陈强, 孙庆国, 王天祥. 基于液氮冷源的液态甲烷过冷加注工艺[J]. 航空动力学报, 2020, 35(5): 956-962. doi: 10.13224/j.cnki.jasp.2020.05.007
引用本文: 陈强, 孙庆国, 王天祥. 基于液氮冷源的液态甲烷过冷加注工艺[J]. 航空动力学报, 2020, 35(5): 956-962. doi: 10.13224/j.cnki.jasp.2020.05.007
CHEN Qiang, SUN Qingguo, WANG Tianxiang. Liquid methane subcooling and filling process using liquid nitrogen as cold source[J]. Journal of Aerospace Power, 2020, 35(5): 956-962. doi: 10.13224/j.cnki.jasp.2020.05.007
Citation: CHEN Qiang, SUN Qingguo, WANG Tianxiang. Liquid methane subcooling and filling process using liquid nitrogen as cold source[J]. Journal of Aerospace Power, 2020, 35(5): 956-962. doi: 10.13224/j.cnki.jasp.2020.05.007

基于液氮冷源的液态甲烷过冷加注工艺

doi: 10.13224/j.cnki.jasp.2020.05.007
基金项目: 航天低温推进剂技术国家重点实验室开放课题(SKLTSCP1805)

Liquid methane subcooling and filling process using liquid nitrogen as cold source

  • 摘要: 针对商业火箭公司对于液态甲烷过冷加注的需求,开展了基于液氮冷源的甲烷过冷加注系统方案设计,并计算得到了不同甲烷流量和液氮压力参数下的过冷器换热面积。为了防止液氮温度过低造成液态甲烷凝结,参考现有液氧和煤油工艺流程,提出2种不同控制策略的甲烷过冷加注系统,并详细对比分析了这2种系统所能实现的6个不同工艺流程。结果表明:基于背压控制的加注系统相比于基于液位控制的系统具有更高可靠性,同时前者能够实现在线实时加注工艺,原因在于其通过控制换热器中液氮压力来保证液氮温度始终高于甲烷冰点。甲烷过冷器换热面积与甲烷加注流量、液氮背压均成正比,在具体工程实施中应当根据加注需要选取合适的加注流量和液氮背压,以减小过冷器尺寸和降低设备制造成本。

     

  • [1] 曾占魁,史敏辉.国内商业航天机构调研分析[J].中国航天,2018(1):11-15. ZENG Zhankui,SHI Minhui.Research and analysis of domestic commercial space agencies[J].Aerospace China,2018(1):11-15.(in Chinese)
    [2] 李文龙,李平,邹宇.烃类推进剂航天动力技术进展与展望未来[J].宇航学报,2015,36(3):243-252. LI Wenlong,LI Ping,ZOU Yu.Review and future trend of space propulsion technique using hydrocarbon propellants[J].Journal of Astronautics,2015,36(3):243-252.(in Chinese)
    [3] 尹亮,刘伟强.液氧/甲烷发动机研究进展与技术展望[J].航空兵器,2018(4):21-27. YIN Liang,LIU Weiqiang.Review and prospect of LOX/methane rocket engine systems[J].Aero Weaponry,2018(4):21-27.(in Chinese)
    [4] 郑大勇,颜勇,孙纪国.液氧甲烷发动机重复使用关键技术发展研究[J].导弹与航天运载技术,2018(2):31-35. ZHENG Dayong,YAN Yong,SUN Jiguo.Development study of key reusable technology for LOX/methane engine[J].Missiles and Space Vehicles,2018(2):31-35.(in Chinese)
    [5] 符锡理.运载火箭液氢液氧低温推进剂加注技术[J].低温工程,1995(6):1-8. FU Xili.A review of LH2,LO2 cryogenic propellant loading technology for launch vehicles[J].Cryogenics,1995(6):1-8.(in Chinese)
    [6] 王维彬,孙纪国.航天动力发展的生力军:液氧甲烷火箭发动机[J].航天制造技术,2011(2):3-6. WANG Weibing,SUN Jiguo.Liquid oxygen and methane rocket engine:the new force of space power development[J].Aerospace Manufacturing Technology,2011(2):3-6.(in Chinese)
    [7] 孙宏明.液氧/甲烷发动机评述[J].火箭推进,2006,32(2):23-31. SUN Hongming.Review of liquid oxygen/methane rocket engine[J].Journal of Rocket Propulsion,2006,32(2):23-31.(in Chinese)
    [8] 符锡理.土星I(SA-7)运载火箭液氢加注系统[J].国外导弹与航天运载器,1987(2):60-64. FU Xili.Liquid hydrogen loading system of Saturn I (SA-7) launch vehicle[J].Foreign Missiles and Space Vehicles,1987(2):60-64.(in Chinese)
    [9] 符锡理.国外航天发射场液氢液氧加注系统[J].国外导弹与航天运载器,1984(6):40-51. FU Xili.Liquid hydrogen and liquid oxygen filling system of foreign space launch sites[J].Foreign Missiles and Space Vehicles,1984(6):40-51.(in Chinese)
    [10] 符锡理.土星Ⅰ(SA-10)运载火箭37B发射场液氢加注系统[J].国外导弹技术,1981(10):42-47. FU Xili.Liquid hydrogen filling system for 37B launch site of Saturn I (SA-10) launch vehicle[J].Foreign Missiles Technology,1981(10):42-47.(in Chinese)
    [11] 程水旺.日本运载火箭液氢地面贮存加注系统综述[J].低温工程,1994(3):1-8. CHENG Shuiwang.A summary of the ground LH2 storing and fuelling system of the launch vehicles of Japan[J].Cryogenics,1994(3):1-8.(in Chinese)
    [12] 杨金宁.低温推进剂的温度控制[J].低温工程,1994(1):17-21. YANG Jinning.Temperature control of the low temperature propellant[J].Cryogenics,1994(1):17-21.(in Chinese)
    [13] 王瑞铨.国外运载火箭低温加注系统[J].导弹与航天运载技术,1997(2):21-31. WANG Ruiquan.The cryogenic fueling systems of foreign launch vehicles[J].Missiles and Space Vehicles,1997(2):21-31.(in Chinese)
    [14] JOHNSON W L,TOMSIK T M,SMUDDE T D.A densified liquid methane delivery system for the Altair as-cent stage[R].AIAA-2010-1904,2010.
    [15] MUSTAFI S,CANAVAN E,JOHNSON W.Subcooling cryogenic propellant for long duration space exploration[R].AIAA-2009-6584,2009.
    [16] MUSTAFI S,JOHNSON W,KASHANI A.Subcooling for long duration in-space cryogenic propellant storage[R].AIAA-2010-8869,2010.
    [17] TOMSIK T M,MEYER M L.Liquid oxygen propellant densification production and performance test results with a large-scale flight-weight propellant tank for the X33RLV[R].NASA TM-216247,2010.
    [18] 谢福寿,雷刚,王磊,等.过冷低温推进剂的性能优势及其应用前景[J].西安交通大学学报,2015,49(5):16-23. XIE Fushou,LEI Gang,WANG Lei,et al.Performance advantages and application prospects of subcooled cryogenic propellants[J].Journal of Xi’an Jiaotong University,2015,49(5):16-23.(in Chinese)
    [19] 谢福寿,厉彦忠,王磊,等.低温推进剂过冷技术研究[J].航空动力学报,2017,32(3):762-768. XIE Fushou,LI Yanzhong,WANG Lei,et.al.Study on subcooled technology for cryogenic propellants[J].Journal of Aerospace Power,2017,32(3):762-768.(in Chinese)
    [20] 邵业涛,罗庶,王浩苏,等.低温推进剂深度过冷加注技术研究及对运载火箭性能影响分析[J].宇航总体技术,2019,3(2):18-25. SHAO Yetao,LUO Shu,WANG Haosu,et al.Research on the supercooling loading technology of cryogenic propellant and its effects on rocket performance[J].Astronautical Systems Engineering Technology,2019,3(2):18-25.(in Chinese)
    [21] Space X Company.Falcon 9 user’s guide[EB/OL].[2019-09-10].https:∥www.spacex.com/sites/spacex/files/falcon_users_guide_10_2019.pdf.
    [22] 胡旭东,宋扬.液氧全过冷加注在新一代运载火箭加注工作中的应用价值[J].导弹与航天运载技术,2018(4):87-92. HU Xudong,SONG Yang.Application value analysis of subcooled liquid oxygen full loading in new generation of launch vehicles[J].Missiles and Space Vehicles,2018(4):87-92.(in Chinese)
  • 加载中
计量
  • 文章访问数:  394
  • HTML浏览量:  6
  • PDF量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-22
  • 刊出日期:  2020-05-28

目录

    /

    返回文章
    返回