留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用上游沙丘形斜坡增强气膜冷却

张盛昌 张靖周 谭晓茗

张盛昌, 张靖周, 谭晓茗. 利用上游沙丘形斜坡增强气膜冷却[J]. 航空动力学报, 2020, 35(5): 973-982. doi: 10.13224/j.cnki.jasp.2020.05.009
引用本文: 张盛昌, 张靖周, 谭晓茗. 利用上游沙丘形斜坡增强气膜冷却[J]. 航空动力学报, 2020, 35(5): 973-982. doi: 10.13224/j.cnki.jasp.2020.05.009
ZHANG Shengchang, ZHANG Jingzhou, TAN Xiaoming. Film cooling enhancement by using upstream sand-dune-shaped ramp[J]. Journal of Aerospace Power, 2020, 35(5): 973-982. doi: 10.13224/j.cnki.jasp.2020.05.009
Citation: ZHANG Shengchang, ZHANG Jingzhou, TAN Xiaoming. Film cooling enhancement by using upstream sand-dune-shaped ramp[J]. Journal of Aerospace Power, 2020, 35(5): 973-982. doi: 10.13224/j.cnki.jasp.2020.05.009

利用上游沙丘形斜坡增强气膜冷却

doi: 10.13224/j.cnki.jasp.2020.05.009
基金项目: 国家自然科学基金(U1508212); 国家科技重大专项(2017-Ⅲ-0011-0037)

Film cooling enhancement by using upstream sand-dune-shaped ramp

  • 摘要: 在平板上开设单排气膜孔,并通过红外测温法,实验研究了四个典型吹风比(0.5、1.0、1.5和2.0)下圆柱形气膜孔(CH)安置上游沙丘形斜坡(SDR)的绝热气膜冷却效率,并与平直楔形斜坡(SWR)进行了对比,同时结合数值模拟对不同形状的上游斜坡作用机制进行了剖析。研究结果表明:相比SWR,SDR可以诱导出特有的反肾形涡对,因而其在强化气膜冷却方面更具优势。在小吹风比下(吹风比为0.5),SWR和SDR可以分别提高特定区域(孔下游15倍孔径范围内)的面积平均气膜冷却效率达26%和75%左右,在高吹风比下(吹风比为1.5),两者的相对提高幅度分别高达100%和150%左右。

     

  • [1] BUNKER R.S.A review of turbine shaped film cooling technology[J].Journal of Heat Transfer,2005,127(4):441-453.
    [2] LEE K D,KIM K Y.Surrogate based optimization of a laidback fan-shaped hole for film-cooling[J].International Journal of Heat and Fluid Flow,2011,32(1):226-238.
    [3] SAUMWEBER C,SCHULZ A.Effect of geometry variations on the cooling performance of fan-shaped cooling holes[J].Journal of Turbomachinery,2012,134(6):061008.1-061008.16.
    [4] 吴阿赛,朱惠人,刘存良,等.基于热色液晶的异型气膜孔气膜分布特征的可视化实验[J].航空动力学报,2015,30(2):376-383. WU Asai,ZHU Huiren,LIU Cunliang,et al.Visualization experiment on film distribution characteristics of shaped film holes based on thermochromic liquid crystal[J].Journal of Aerospace Power,2015,30(2):376-383.(in Chinese)
    [5] WANG C H,ZHANG J Z,FENG H K,et al.Large eddy simulation of film cooling flow from a fan-shaped hole[J].Applied Thermal Engineering,2018,129:855-870.
    [6] HUANG Y,ZHANG J Z,WANG C H,et al.Multi-objective optimization of laidback fan-shaped film cooling hole on turbine vane suction surface[J].Heat and Mass Transfer,2019,55(4):1181-1194.
    [7] LIU J S,TAPIA L A,CRITES D C,et al.Enhanced film cooling effectiveness with new shaped holes[R].ASME Paper GT2010-22774,2010.
    [8] 吴宏,孟恒辉,陶智,等.抑涡孔结构对气膜冷却效率的影响[J].航空动力学报,2010,25(10):2238-2243. WU Hong,MENG Henghui,TAO Zhi,et al.Numerical investigation on the effect of different anti-veotex hole configurations on film cooling effectiveness[J].Journal of Aerospace Power,2010,25(10):2238-2243.(in Chinese)
    [9] DAI P,LIN F.Numerical study on film cooling effectiveness from shaped and crescent holes[J].Heat and Mass Transfer,2011,47(2):147-154.
    [10] KUSTERER K,TEKIN N,BOHN D,et al.Experimental and numerical investigations of the NEKOMIMI film cooling technology[R].ASME Paper GT2012-68400,2012.
    [11] KALGHAGI P,ACHARYA S.Improved film cooling effectiveness with a round film cooling hole embedded in a contoured crater[J].Journal of Turbomachinery,2015,137(10):101006.1-101006.10.
    [12] LIU C L,ZHU H R,BAI J T,et al.Film cooling performance of converging-slot holes with different exit-entry area ratios[J].Journal of Turbomachinery,2011,133(1):011020.1-011020.11.
    [13] YAO Y,ZHANG J Z,TAN X M.Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side[J].International Communications in Heat and Mass Transfer,2014,52(2):61-72.
    [14] SHIN I P,NA S.Enhancing the effectiveness of film cooling[J].Journal of Aerospace Power,2007,22(4):531-539.
    [15] 何立明,蒋永见,康强,等.利用上游斜坡改善气膜冷却效率的数值研究[J].推进技术,2009,30(1):9-13. HE Liming,JIANG Yongjian,KANG Qiang,et al.Numerical investigation on improving film cooling effectiveness with an upstream ramp[J].Journal of Propulsion Technology,2009,30(1):9-13.(in Chinese)
    [16] CHEN S P,CHYU M K,SHIH T I P.Effects of upstream ramp on the performance of film cooling[J].International Journal of Thermal Science,2011,50(6):1085-1094.
    [17] RALLABANDI A P,GRIZZLE J,HAN J C.Effect of upstream step on flat plate film cooling effectiveness using PSP[J].Journal of Turbomachinery,2011,133(4):041024.1-041024.8.
    [18] ABDALA A M,ELWEKEEL F N.An influence of novel upstream steps on film cooling performance[J].International Journal of Heat and Mass Transfer,2016,93:86-96.
    [19] ABDALA A M,ELWEKEEL F N,HUANG D G.Film cooling effectiveness and flow structures for novel upstream step[J].Applied Thermal Engineering,2016,105:397-410.
    [20] HAMMAMI Z,DELLIL Z A,NEMDILI F,et al.Improving adiabatic film-cooling effectiveness by using an upstream pyramid[J].Computational Thermal Sciences,2016,8(2):135-146.
    [21] ZHENG D R,WANG X J,ZHANG F,et al.Numerical investigation on the effects of the divided steps on film cooling performance[J].Applied Thermal Engineering,2017,124:652-662.
    [22] ZHANG F,WANGX,LI J.The effects of upstream steps with unevenly spanwise distributed height on rectangular hole film cooling performance[J].International Journal of Heat and Mass Transfer,2016,102:1209-1221.
    [23] ZHOU W,HU H.Improvements of film cooling effectiveness by using Barchan dune shaped ramps[J].International Journal of Heat and Mass Transfer,2016,103:443-456.
    [24] ZHOU W,HU H.A novel sand-dune-inspired design for improved film cooling performance[J].International Journal of Heat and Mass Transfer,2017,110:908-920.
    [25] ETHRIDGE M I,CUTBIRTH J M,BOGARD D G.Scaling of performance for varying density ratio coolants on an airfoil with strong curvature and pressure gradient effects[J].Journal of Turbomachinery,2001,123(2):231-237.
    [26] KLINE S J,MCCLINTOCK F A.Describing uncertainties in single-sample experiments[J].Mechanical Engineering,1953,75(1):3-8.
    [27] LIU J J,LIN X C,ZHANG X D,AN B T.Investigation on cooling effectiveness and aerodynamic loss of a turbine cascade with film cooling[J].Journal of Thermal Science 2016,25(1):50-59.
    [28] HARRISON K,BOGARD D.Comparison of RANS turbulence models for prediction of film cooling performance[R].ASME Paper GT2008-50366,2008.
    [29] SILIETI M,KASSAB A J,DIVO E.Film cooling effectiveness:comparison of adiabatic and conjugate heat transfer CFD models[J].International Journal of Thermal Science,2009,48(12):2237-2248.
  • 加载中
计量
  • 文章访问数:  430
  • HTML浏览量:  1
  • PDF量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 刊出日期:  2020-05-28

目录

    /

    返回文章
    返回