留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非定常来流压力下基于DMD方法的预冷器换热特性

姚李超 付超 张俊强

姚李超, 付超, 张俊强. 非定常来流压力下基于DMD方法的预冷器换热特性[J]. 航空动力学报, 2020, 35(10): 2064-2077. doi: 10.13224/j.cnki.jasp.2020.10.006
引用本文: 姚李超, 付超, 张俊强. 非定常来流压力下基于DMD方法的预冷器换热特性[J]. 航空动力学报, 2020, 35(10): 2064-2077. doi: 10.13224/j.cnki.jasp.2020.10.006
YAO Lichao, FU Chao, ZHANG Junqiang. Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method[J]. Journal of Aerospace Power, 2020, 35(10): 2064-2077. doi: 10.13224/j.cnki.jasp.2020.10.006
Citation: YAO Lichao, FU Chao, ZHANG Junqiang. Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method[J]. Journal of Aerospace Power, 2020, 35(10): 2064-2077. doi: 10.13224/j.cnki.jasp.2020.10.006

非定常来流压力下基于DMD方法的预冷器换热特性

doi: 10.13224/j.cnki.jasp.2020.10.006

Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method

  • 摘要: 采用大涡模拟方法对非定常来流压力条件下叉排管束预冷器换热特性进行了研究,同时运用动力学模态分解方法对流场主控流动结构进行了识别,探讨了来流压力周期性变化频率对预冷器内部流动、换热性能和熵产的影响。结果表明:来流压力变化频率对预冷器时均和瞬态换热性能影响均不显著,但当来流压力变化频率增大至流场固有频率950 Hz时,流场发生共振,换热性能发生剧烈振荡;管束壁面剪切层运动和绕流脱落涡结构为主控流动结构,其时空演化过程对瞬时换热性能起决定作用;当流场发生共振时,剪切层的生长和演化与来流速度的脉动密切相关,前排管束的绕流涡脱落周期与来流压力/速度变化周期一致,而壁面剪切层的生长周期则为来流压力/速度变化周期的两倍。此外,叉排管束流场的换热熵产决定于主控流动结构,其时空演化特征与主控流动结构演化规律完全一致。

     

  • [1] LONGSTAFF R,BOND A.The SKYLON project[R].AIAA-2011-2244,2011.
    [2] CECERE D,GIACOMAZZI E,INGENITO A.A review on hydrogen industrial aerospace applications[J].International Journal of Hydrogen Energy,2014,39(20):10731-10747.
    [3] MURRAY J J,HEMPSELL C M,BOND A.An experimental precooler for airbreathing rocket engines[J].Journal of the British Interplanetary Society,2001,54(5/6):199-209.
    [4] WEBBER H,TAYLOR N.Local heat transfer measurements inside a compact heat exchanger[R].AIAA 2010-4653,2010.
    [5] DAVIES P,HEMPSELL M,VARVILL R.Progress on SKYLON and SABRE[C].International Astronautical Congress,IAC-15-D2-1,2015.
    [6] YU Shufang,JONES T,OGAWA H,et al.Multi-objective design optimization of precoolers for hypersonic airbreathing propulsion[J].Journal of Thermophysics and Heat Transfer,2016,31(2):1-13.
    [7] LINTON D,THORNBER B.Direct numerical simulation of transitional flow in a staggered tube bundle[J].Physics of Fluids,2016,28(2):31-60.
    [8] LI Xiaowei,WU Xinxin.Thermal mixing of the cross flow over tube bundles[J].International Journal of Heat and Mass Transfer,2013,67(6):352-361.
    [9] SCHMID P J.Dynamic mode decomposition of numerical and experimental data[J].Journal of Fluid Mechanics,2008,656(10):5-28.
    [10] WAN Zhenhua,ZHOU Lin,WANG Bofu,et al.Dynamic model decomposition of forced spatially developed transitional jets[J].European Journal of Mechanics,2015,51:16-26.
    [11] SEENA A,SUNG H J.Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations[J].International Journal of Heat and Fluid Flow,2011,32(6):1098-1110.
    [12] LARUSSON R,ANDERSSON N,OSTLUND J.Dynamic mode decomposition of a separated nozzle flow with transonic resonance[J].AIAA Journal,2017,55(4):1-12.
    [13] 代珂,郭峰,朱剑锋,等.基于DMD方法的超声速进气道喘振特性分析[J].航空动力学报,2019,34(5):1076-1084. DAI Ke,GUO Feng,ZHU Jiangfeng,et al.Characteristics investigation on supersonic inlet buzz with dynamic mode decomposition method[J].Journal of Aerospace Power,2019,34(5):1076-1084.(in Chinese)
    [14] 洪树立,黄国平,陆惟煜,等.采用DMD方法研究叶栅不同攻角的拟序结构[J].航空动力学报,2018,33(9):2150-2160. HONG Shuli,HUANG Guoping,LU Weiyu,et al.Coherent structures of cascade under different attack angles with DMD method[J].Journal of Aerospace Power,2018,33(9):2150-2160.(in Chinese)
    [15] 吴亚东,李涛,赖生智.POD和DMD方法分析不同间隙压气机旋转不稳定性特性[J].航空动力学报,2019,34(9):2018-2026. WU Yadong,LI Tao,LAI Shengzhi.Analysis of rotating instability characteristics in compressor with different tipclearances by POD and DMD methods[J].Journal of Aerospace Power,2019,34(9):2018-2026.(in Chinese)
    [16] MEZIC I.Spectral properties of dynamical systems,model reduction and decompositions[J].Nonlinear Dynamics,2005,41:309-325.
    [17] TU J H,ROWLEY C W,LUCHTENBURG D M,et al.On dynamic mode decomposition:theory and applications[J].Journal of Computational Dynamics,2015,1(2):391-421.
    [18] KOU Jiaqing,ZHANG Werwei.An improved criterion to select dominant modes from dynamic mode decomposition[J].European Journal of Mechanics,2018,62:109-129.
    [19] 寇家庆,张伟伟.动力学模态分解及其在流体力学中的应用[J].空气动力学学报,2018,36(2):163-179. KOU Jiaqing,ZHANG Weiwei.Dynamic mode decomposition and its applications in fluid dynamics[J].Acta Aerodynamica Sinica,2018,36(2):163-179.(in Chinese)
    [20] 付超.壁面传热环境中流动与换热的交互作用机理[D].北京:北京航空航天大学,2019. FU Chao.Interaction mechanism between flow and heat transfer under non-adiabatic wall conditions[D].Beijing:Beijing University of Aeronautics and Astronautics University,2019.(in Chinese)
    [21] 魏佳云,李伟鹏,许思为,等.基于DMD方法的缝翼低频噪声机理分析[J].航空学报,2018,39(1):177-187. WEI Jiayun,LI Weipeng,XU Siwei,et al.Analysis of mechanism of salt low frequency noise based on zonal DMD[J].Acta Aeronautica et Astronautica Sinica,2018,39(1):177-187.(in Chinese)
  • 加载中
计量
  • 文章访问数:  205
  • HTML浏览量:  2
  • PDF量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回