留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非恒定增压式微尺度拉瓦尔喷管流动特性

许啸 王园丁 张军

许啸, 王园丁, 张军. 非恒定增压式微尺度拉瓦尔喷管流动特性[J]. 航空动力学报, 2020, 35(12): 2489-2504. doi: 10.13224/j.cnki.jasp.2020.12.003
引用本文: 许啸, 王园丁, 张军. 非恒定增压式微尺度拉瓦尔喷管流动特性[J]. 航空动力学报, 2020, 35(12): 2489-2504. doi: 10.13224/j.cnki.jasp.2020.12.003
XU Xiao, WANG Yuanding, ZHANG Jun. Unsteady pressure boost micro-scale Laval nozzle flow characteristics[J]. Journal of Aerospace Power, 2020, 35(12): 2489-2504. doi: 10.13224/j.cnki.jasp.2020.12.003
Citation: XU Xiao, WANG Yuanding, ZHANG Jun. Unsteady pressure boost micro-scale Laval nozzle flow characteristics[J]. Journal of Aerospace Power, 2020, 35(12): 2489-2504. doi: 10.13224/j.cnki.jasp.2020.12.003

非恒定增压式微尺度拉瓦尔喷管流动特性

doi: 10.13224/j.cnki.jasp.2020.12.003
基金项目: 国家自然科学基金青年科学基金(11902125); 江苏省高等学校自然科学研究面上项目(18KJB130002);国家重点研发计划资助项目(2018YFC0310400),

Unsteady pressure boost micro-scale Laval nozzle flow characteristics

  • 摘要: 针对微尺度喷流在航天器运动状态切换时出现的非恒定增压变化,采用直接模拟蒙特卡洛(DSMC)方法对阶跃式增压和线性式增压两种模式下的微尺度拉瓦尔喷管流场进行了模拟,并对其变化过程中的流动特性进行了对比分析。结果显示:阶跃式增压会导致流动特性出现较大幅值的峰谷式波动,而线性式增压下的流动特性则呈现出线性变化的特点;黏性力对微尺度喷流的非恒定增压变化产生了重要的黏滞作用,在喉部扩张段至出口的流场中尤为明显;在设定的条件下,阶跃式增压过程中喷流产生的总冲量较线性式增压高59.5%,质量流量高74.7%,单位工质提供的冲量低约8.6%,波动性也高于线性式模型,阶跃式增压适用于系统需要较大推力改变运动状态且推进剂充足的情况,而线性式增压在系统精确微调或需要推进剂产生更高效能时具有明显的优势。

     

  • [1] ROTHE D E.Electron-beam studies of viscous flow in supersonic nozzles[J].AIAA Journal,1971,9(5):804-811.
    [2] GRISNIK S,SMITH T.Experimental study of low Reynolds number nozzles[R].AIAA-87-0992,1987.
    [3] LEWIS D H,Jr,JANSON S W,COHEN R B,et al.Digital micropropulsion[J].Sensors and Actuators:A Physical,2000,80(2):143-154.
    [4] BAYT R,BREUER K.Design and performance of hot and cold supersonic microjets[R].AIAA-2001-0721,2001.
    [5] ALEXEENKO A A,LEVIN D A,GIMELSHEIN S F,et al.Numerical modeling of axisymmetric and three-dimensional flows in microelectromechanical systems nozzles[J].AIAA Journal,2002,40(5):897-904.
    [6] WANG M R,LI Z X.Numerical simulations on performance of MEMS-based nozzles at moderate or low temperatures[J].Microfluidics and Nanofluidics,2004,1(1):62-70.
    [7] TITOV E,GALLAGHER-ROGERS A,LEVIN D,et al.Examination of a collision-limiter direct simulation Monte Carlo method for micro propulsion applications[J].Journal of Propulsion and Power,2008,24(2):311-321.
    [8] RANJAN R,KARTHIKEYAN K,RIAZ F,et al.Cold gas propulsion microthruster for feed gas utilization in micro satellites[J].Applied Energy,2018,220(6):921-933.
    [9] RAFI K M,DEEPU M,RAJESH G.Effect of heat transfer and geometry on micro-thruster performance[J].International Journal of Thermal Sciences,2019,146(12):1-13.
    [10] CAI G,ZHENG H,LIU L,et al.Three-dimensional particle simulation of ion thruster plume impingement[J].Acta Astronautica,2018,151(10):645-654.
    [11] 张先锋.微尺度流动及强化混合技术的研究[D].合肥:中国科学技术大学,2007. ZHANG Xianfeng.Study on flow and mixing teehnique in microfluidic systems[D].Hefei:University of Science and Technology of China,2007.(in Chinese)
    [12] 刘赵淼,张谭.Laval型微喷管内气体流动的计算及分析[J].航空动力学报,2009,24(7):1556-1563. LIU Zhaomiao,ZHANG Tan.Numerical investigation on gas flow in Laval micronozzle[J].Journal of Aerospace Power,2009,24(7):1556-1563.(in Chinese)
    [13] 刘赵淼,张谭,逄燕.喉部形状设计对微喷管内流动及性能的影响[J].航空动力学报,2010,25(10):2279-2284. LIU Zhaomiao,ZHANG Tan,PANG Yan.Effects of throat shape design on propulsion performance of micronozzles[J].Journal of Aerospace Power,2010,25(10):2279-2284.(in Chinese)
    [14] 杨海威,朱卫兵,赵阳.基于分子运动模拟的微喷管流体流动[J].航空动力学报,2009,24(10):2189-2192. YANG Haiwei,ZHU Weibin,ZHAO Yang.Micronozzle flow based on simulation of molecule movement[J].Journal of Aerospace Power,2009,24(10):2189-2192.(in Chinese)
    [15] 张赛文.基于NS/DSMC耦合算法的喷管跨流域流动模拟[D].哈尔滨:哈尔滨工程大学,2018. ZHANG Saiwen.Nozzle trans-regime flow simulation based on N-S/DSMC coupling algorithm[D].Harbin:Harbin Engineering University,2018.(in Chinese)
    [16] KETSDEVER A,MUELLER J.Systems considerations and design options for microspacecraft propulsion systems[R].AIAA-99-2723,1999.
    [17] MUELLER J.Thruster options for microspacecraft:A review and evaluation of existing hardware and emerging technologies[R].AIAA-97-3058,1997.
    [18] 贾永刚.微推进技术及研究发展现状[C]∥中国宇航学会固体火箭推进第22届年会论文集(发动机分册).成都:中国宇航学会,2005:249-255.
    [19] 李晗.微推进器的制备及其性能研究[D].安徽 芜湖:安徽工程大学,2015. LI Han.Research on fabrication and performance for micro-thruster[D].Wuhu,Anhui:Anhui Polytechnic University,2015.(in Chinese)
    [20] 郑志远,高华,樊振军,等.激光等离子体推进技术研究新进展[J].科技导报,2012,30(28/29):103-107. ZHENG Zhiyuan,GAO Hua,FAN Zhenjun,et al.Developments of laser plasma propulsion technology[J].Science and Technology Review,2012,30(28/29):103-107.(in Chinese)
    [21] BIRD G A.Molecular gas dynamics and direct simulation of gas flow[M].Oxford,Britain:Clarendon Press,1994.
    [22] WAGNER W.A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation[J].Journal of Statistical Physics,1992,66(3/4):1011-1044.
  • 加载中
计量
  • 文章访问数:  179
  • HTML浏览量:  2
  • PDF量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-17
  • 刊出日期:  2020-12-28

目录

    /

    返回文章
    返回