留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焊缝补强方式对大直径贮箱箱底承载性能影响

胡正根 湛利华 董曼红

胡正根, 湛利华, 董曼红. 焊缝补强方式对大直径贮箱箱底承载性能影响[J]. 航空动力学报, 2020, 35(12): 2681-2688. doi: 10.13224/j.cnki.jasp.2020.12.022
引用本文: 胡正根, 湛利华, 董曼红. 焊缝补强方式对大直径贮箱箱底承载性能影响[J]. 航空动力学报, 2020, 35(12): 2681-2688. doi: 10.13224/j.cnki.jasp.2020.12.022
HU Zhenggen, ZHAN Lihua, DONG Manhong. Effect of weld reinforcement methods on bearing performance of large diameter tank bottom[J]. Journal of Aerospace Power, 2020, 35(12): 2681-2688. doi: 10.13224/j.cnki.jasp.2020.12.022
Citation: HU Zhenggen, ZHAN Lihua, DONG Manhong. Effect of weld reinforcement methods on bearing performance of large diameter tank bottom[J]. Journal of Aerospace Power, 2020, 35(12): 2681-2688. doi: 10.13224/j.cnki.jasp.2020.12.022

焊缝补强方式对大直径贮箱箱底承载性能影响

doi: 10.13224/j.cnki.jasp.2020.12.022
基金项目: 国家重点基础研究发展计划(2017YFB0306300); 装备预先研究项目(305060509)

Effect of weld reinforcement methods on bearing performance of large diameter tank bottom

  • 摘要: 基于有限元法研究了典型10 m级直径贮箱箱底焊缝在双面对称补强、内表面补强及外表面补强三种情况下的内压承载性能。数值计算采用二维对称平面模型,考虑了筒段和短壳真实边界条件及焊缝对承载能力的影响,构建的考虑材料塑性的非线性数值分析模型准确地获得了贮箱箱底内外表面经向应力。结果表明:顶盖和瓜瓣焊缝区域是箱底的薄弱位置,使用内压下,双面对称补强的加强区内外表面经向应力差较小,结构均未进入塑性,单面补强的加强区内外表面经向应力差远大于双面对称补强,局部进入塑性,且外表面补强的加强区最大和最小经向应力差相对于内表面补强分别增加了9.7%和27.2%,变形不协调;设计内压下,箱底内外表面均有局部进入塑性,材料塑性对内外表面经向应力差有一定的缓解作用,能够显著缓解内外表面应力差造成的附加弯矩;双面对称补强优于内表面补强,内表面补强优于外表面补强,单面补强易产生附加弯矩,不利于箱底的均匀承载和变形协调。该研究结果指导了大直径贮箱箱底结构的优化设计。

     

  • [1] 吴会强,黄诚,常志龙.国外大型贮箱结构研制现状及展望[J].宇航材料工艺,2014,44(增刊1):7-13. WU Huiqiang,HUANG Cheng,CHANG Zhilong.Recent progress and prospects of large foreign tank structure[J].Aerospace Materials and Technology,2014,44(Suppl.1):7-13.(in Chinese)
    [2] 王国庆,李曙光,吴会强.重型火箭贮箱大型结构制造技术现状及发展分析[J].宇航材料工艺,2014,44(增刊1):1-6. WANG Guoqing,LI Shuguang,WU Huiqiang.Status and development analyses on manufacturing technologies for large scale structures of heavy-lift launch vehicle propellant tanks[J].Aerospace Materials and Technology,2014,44(Suppl.1):1-6.(in Chinese)
    [3] MESCALL J.Stability of thin torispherical shells under uniform internal pressure[R].NASA TN D-1510,1962.
    [4] ADACHI J,BENICEK M.Buckling of torispherical shells under internal pressure[J].Experimental Mechanics,1964,4(8):217-222.
    [5] MICHAEL P N,RICHARD D Y,TIMOTHY J C,et al.Nonlinear analysis of the space shuttle superlight weight LO2 tank:Part Ⅱ behavior under 3g end-of-flight loads[R].NASA/TM-1998-207287,1998.
    [6] RICHARD D Y,MICHAEL P N,TIMOTHY J C,et al.Nonlinear analysis of the space shuttle superlight weight LO2 tank:Part Ⅰ behavior under booster ascent loads[R].NASA/TM-1998-208127,1998.
    [7] NEMETH M P,BRITT V O,COLLINS T J,et al.Nonlinear analysis of the space shuttle superlight weight external fuel tank[R].NASA-TM-112151,1996.
    [8] AHMED R,WILHELM J.Analysis and test of low profile aluminum aerospace tank dome[R].NASA-TP-3442,1993.
    [9] WILLIAM L.Structural analysis of helios filament wound tanks subjected to internal pressure and cooling[R].NASA/TM-2005-212855,2005.
    [10] THEODORE F J,DAVID W S,ROBERT A M.Structures and design phase Ⅰ summary for the NASA composite cryotank technology demonstration project[R].AIAA 2013-1825,2013.
    [11] DAVID W S,ROBERT A M,THEODORE F J.Structural design and sizing of a metallic cryotank concept[R].AIAA 2013-1844,2013.
    [12] 周广文.推进剂贮箱优化设计的思考[J].导弹与航天运载技术,2011(1):26-28. ZHOU Guangwen.Optimal structure design for launch vehicle tank[J].Missiles and Space Vehicles,2011(1):26-28.(in Chinese)
    [13] 章凌,黄诚,方岱宁,等.大型薄壁贮箱焊接区等应力优化设计[J].应用力学学报,2015,32(4):593-596. ZHANG Ling,HUANG Cheng,FANG Daining et al.Optimized design of welding area of large thin wall storage tank[J].Chinese Journal of Applied Mechanics,2015,32(4):593-596.(in Chinese)
    [14] 王博,赵亮,郝鹏,等.改善贮箱Y形环焊缝应力水平的优化设计[J].宇航材料工艺,2014,44(增刊1):26-28. WANG Bo,ZHAO liang,HAO Peng,et al.Optimization of improving Y-ring welding stress level for tanks[J].Aerospace Materials and Technology,2014,44(Suppl.1):26-28.(in Chinese)
    [15] 黄诚,胡正根,马云龙,等.筒段边界对大直径贮箱椭球箱底的内压稳定性影响研究[J].强度与环境,2015,42(5):19-26. HUANG Cheng,HU Zhenggen,MA Yunlong,et al.Impact study of shell segment boundary on internal pressure stability of the large diameter tank ellipsoid bottom[J].Structure and Environment Engineering,2015,42(5):19-26.(in Chinese)
    [16] 黄诚,胡正根,常志龙,等.大直径贮箱三心箱底内压作用下的力学性能分析[J].强度与环境,2016,43(6).19-26. HUANG Cheng,HU Zhenggen,CHANG Zhilong,et al.Mechanical properties analysis of three-center bottom of the large diameter tank on internal pressure[J].Structure and Environment Engineering,2016,43(6):19-26.(in Chinese)
    [17] 胡正根,黄诚,常志龙,等.基于缺陷敏感性的大直径贮箱椭球箱底内压稳定性研究[J].强度与环境,2017,44(5):19-26. HU Zhenggen,HUANG Cheng,CHANG Zhilong,et al.Analysis of the internal pressure stability on the large diameter tank ellipsoid bottom based on imperfection sensitivity[J].Structure and Environment Engineering,2017,44(5):19-26.(in Chinese)
    [18] 辛腾达,王华,崔村燕,等.贮箱轻量化设计几何参数优化方法[J].西安交通大学学报,2019,53(7):153-159. XIN Tengda,WANG Hua,CUI Cunyan,et al.Geometric parameters optimization for tank lightweight design[J].Journal of Xi’an Jiaotong University,2019,53(7):153-159.(in Chinese)
    [19] 赵亮.大直径薄壁箱体结构力学分析与精细优化设计[D].辽宁 大连:大连理工大学,2015. ZHAO Liang.The mechanical anslysis and refined optimization of large diameter and thin walled tank structures[D].Dalian Liaoning:Dalian University of Technology,2015.(in Chinese)
    [20] 朱天宇.大型共底贮箱结构优化设计[D].辽宁 大连:大连理工大学,2018. ZHU Tianyu.Optimum design of large coplanar tank structures[D].Dalian Liaoning:Dalian University of Technology,2018.(in Chinese)
    [21] 王鹏.传递发动机推力的贮箱箱底结构研究[D].北京:中国运载火箭技术研究院,2019. WANG Peng.Structural research propellant tank aft dome transmitting engine thrust[D].Beijing:China Academy of Launch Vehicle Technology,2019.(in Chinese)
    [22] 周家麟.推进剂金属贮箱设计规范:Q/Dy 350-1995[S].北京:中国运载火箭技术研究院,1995:1-76.
    [23] 利津,皮亚特金.薄壁结构设计[M].廖启端,王敬春,王其兴,等译.北京:国防工业出版社,1983.
  • 加载中
计量
  • 文章访问数:  83
  • HTML浏览量:  2
  • PDF量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-23
  • 刊出日期:  2020-12-28

目录

    /

    返回文章
    返回