留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMAS渗透下热障涂层界面失效分析

张子凡 韩彦冬 王炜哲 蔡振威

张子凡, 韩彦冬, 王炜哲, 蔡振威. CMAS渗透下热障涂层界面失效分析[J]. 航空动力学报, 2021, 36(8): 1702-1711. doi: 10.13224/j.cnki.jasp.20200374
引用本文: 张子凡, 韩彦冬, 王炜哲, 蔡振威. CMAS渗透下热障涂层界面失效分析[J]. 航空动力学报, 2021, 36(8): 1702-1711. doi: 10.13224/j.cnki.jasp.20200374
ZHANG Zifan, HAN Yandong, WANG Weizhe, CAI Zhenwei. Interface failure analysis of thermal barrier coatings under CMAS penetration[J]. Journal of Aerospace Power, 2021, 36(8): 1702-1711. doi: 10.13224/j.cnki.jasp.20200374
Citation: ZHANG Zifan, HAN Yandong, WANG Weizhe, CAI Zhenwei. Interface failure analysis of thermal barrier coatings under CMAS penetration[J]. Journal of Aerospace Power, 2021, 36(8): 1702-1711. doi: 10.13224/j.cnki.jasp.20200374

CMAS渗透下热障涂层界面失效分析

doi: 10.13224/j.cnki.jasp.20200374
基金项目: 

国家自然科学基金面上项目(51875341)

详细信息
    作者简介:

    张子凡(1996-),男,硕士生,主要研究方向为热障涂层强度评估。

    通讯作者:

    蔡振威(1992-),男,博士后,主要研究方向为高温结构部件的强度评估及先进热障涂层的智能制造。E-mail:xiaoyezhu1992@sjtu.edu.cn

  • 中图分类号: V232.4;TG174.4

Interface failure analysis of thermal barrier coatings under CMAS penetration

  • 摘要: 基于钙镁铝硅等氧化物(CMAS)渗透对热障涂层陶瓷层(TC)热/力性能的改变,考虑温度梯度作用下不同CMAS渗透深度及CMAS渗透下界面表面粗糙度对界面温度分布,热生长氧化物(TGO)厚度及界面应力行为的影响。结果表明: CMAS的渗透使陶瓷层的热导率增加,进一步导致界面温度升高、TGO的厚度增大、界面的应力状态更为严重。界面表面粗糙度的增长则导致界面波峰波谷处的温度差异增大,界面TGO不均匀生长,最终引起界面的应力分布发生变化。

     

  • [1] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002, 296(5566):280-284.
    [2] CLARKE D R, OECHSNER M, PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS (Materials Research Society) Bulletin, 2012, 37(10):891-898.
    [3] SCHLICHTING K W,PADTURE N P,JORDAN E H,et al. Failure modes in plasma-sprayed thermal barrier coatings[J]. Materials Science and Engineering:A, 2003, 342(1/2):120-130.
    [4] CHEN W R,ZHAO L R.Review-volcanic ash and its influence on aircraft engine components[J].Procedia Engineering, 2015,99:795-803.
    [5] DREXLER J M,GLEDHILL A D,SHINODA K,et al.Jet engine coatings for resisting volcanic ash damage[J]. Advanced Materials,2011,23(21):2419-2424.
    [6] KAKUDA T R,LEVI C G,BENNETT T D.The thermal behavior of CMAS-infiltrated thermal barrier coatings[J]. Surface and Coatings Technology,2015,272:350-356.
    [7] KRÄMER S,YANG J,LEVI C G.infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts[J]. Journal of the American Ceramic Society, 2008,91(2):576-583.
    [8] WIESNER V L, BANSAL N P. Mechanical and thermal properties of calcium-magnesium aluminosilicate(CMAS) glass[J]. Journal of the European Ceramic Society, 2015, 35(10):2907-2914.
    [9] WU Yiyou, LUO Hua, CAI Canying, et al. Comparison of CMAS corrosion and sintering induced microstructural characteristics of APS thermal barrier coatings[J].Journal of Materials Science and Technology,2019,35(3):440-447.
    [10] KRÄMER S, FAULHABER S, CHAMBERS M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration[J]. Materials Science and Engineering:A,2008,490(1/2):26-35.
    [11] RANJBAR-FAR M, ABSI J, MARIAUX G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J].Materials and Design,2010,31(2):772-781.
    [12] YU Q M, ZHOU H L, WANG L B. Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system[J]. Ceramics International,2016,42(7):8338-8350.
    [13] HAN M, HUANG J, CHEN S. The influence of interface morphology on the stress distribution in double-ceramic-layer thermal barrier coatings[J]. Ceramics International, 2015, 41(3):4312-4325.
    [14] KYAW S, JONES A, JEPSON M A E, et al. Effects of three-dimensional coating interfaces on thermo-mechanical stresses within plasma spray thermal barrier coatings[J].Materials and Design,2017,125:189-204.
    [15] 楼思余,单萧,赵晓峰. 大气等离子喷涂热障涂层CMAS防护层成分及厚度优化[J].表面技术,2018,47(2):208-217. LOU Siyu, SHAN Xiao, ZHAO Xiaofeng.Composition and thickness optimization of anti-CMAS layer on air plasma sprayed thermal barrier coatings[J]. Surface Technology, 2018,47(2):208-217.(in Chinese)
    [16] 孙友贝,李定俊,范华,等.CMAS沉积物对等离子喷涂纳米热障涂层组织结构及力学性能影响[J]. 东方汽轮机, 2019(1):58-63. SUN Youbei,LI Dingjun,FAN Hua,et al.Effect of CMAS deposits on microstructure and mechanical properties of plasma-sprayed nanostructured yttria stabilized zirconia coatings[J].Dongfang Turbine,2019(1):58-63.(in Chinese)
    [17] SCHAPERY R A. Thermal expansion coefficients of com-posite materials based on energy principles[J]. Journal of Composite Materials,2016,2(3):380-404.
    [18] ZHANG Guanghui, FAN Xueling, XU Rong, et al. Transient thermal stress due to the penetration of calcium-magnesium-alumino-silicate in EB-PVD thermal barrier coating system[J]. Ceramics International, 2018, 44(11):12655-12663.
    [19] SU Luochuan, YI Chenhong. Effects of CMAS penetration on the delamination cracks in EB-PVD thermal barrier coatings with curved interface[J].Ceramics International,2017,43(12):8893-8897.
    [20] JIANG Jishen,JIANG Lingxin,CAI Zhenwei,et al.Numerical stress analysis of the TBC-film cooling system under operating conditions considering the effects of thermal gradient and TGO growth[J]. Surface and Coatings Technology, 2019,357(10):433-444.
    [21] WANG Ting, LI Xianchang.Mist film cooling simulation at gas turbine operating conditions[J]. International Journal of Heat and Mass Transfer,2008,51(21/22):5305-5317.
    [22] NAKAMURA T,WANG T,SAMPATH S.Determination of properties of graded materials by inverse analysis and instrumented indentation[J]. Acta Materialia, 2000, 48(17):4293-4306.
    [23] BECK T,HERZOG R,TRUNOVA O,et al.Damage mechanisms and lifetime behavior of plasma-sprayed thermal barrier coating systems for gas turbines:Part Ⅱ modeling[J]. Surface and Coatings Technology, 2008, 202(24):5901-5908.
    [24] CHEN Zhi, JIA Wenbin, ZHAO Kai, et al. Comparison of stress evolution under TGO growth simulated by two different methods in thermal barrier coatings[J].Ceramics International,2020,46(3):2915-2922.
    [25] WEI Zhiyuan,CAI Hongneng,TAHIR A,et al.Stress states in plasma-sprayed thermal barrier coatings upon temperature cycling:combined effects of creep, plastic deformation, and TGO growth[J]. Ceramics International, 2019, 45(16):19829-19844.
    [26] WEI Zhiyuan,CAI Hongneng,MENG Guohui,et al.An innovative model coupling TGO growth and crack propagation for the failure assessment of lamellar structured thermal barrier coatings[J].Ceramics International,2020,46(2):1532-1544.
    [27] MCLEAN M.Creep deformation of metal-matrix composites[J].Composites Science and Technology,1985,23(1):37-52.
  • 加载中
计量
  • 文章访问数:  125
  • HTML浏览量:  12
  • PDF量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-05
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回