留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力环境金属燃烧试验研究进展

许培辉 刘建忠 苑继飞 杨卫娟 周俊虎

许培辉, 刘建忠, 苑继飞, 杨卫娟, 周俊虎. 微重力环境金属燃烧试验研究进展[J]. 航空动力学报, 2021, 36(8): 1633-1645. doi: 10.13224/j.cnki.jasp.20200378
引用本文: 许培辉, 刘建忠, 苑继飞, 杨卫娟, 周俊虎. 微重力环境金属燃烧试验研究进展[J]. 航空动力学报, 2021, 36(8): 1633-1645. doi: 10.13224/j.cnki.jasp.20200378
XU Peihui, LIU Jianzhong, YUAN Jifei, YANG Weijuan, ZHOU Junhu. Experimental research progress in combustion of metal under microgravity[J]. Journal of Aerospace Power, 2021, 36(8): 1633-1645. doi: 10.13224/j.cnki.jasp.20200378
Citation: XU Peihui, LIU Jianzhong, YUAN Jifei, YANG Weijuan, ZHOU Junhu. Experimental research progress in combustion of metal under microgravity[J]. Journal of Aerospace Power, 2021, 36(8): 1633-1645. doi: 10.13224/j.cnki.jasp.20200378

微重力环境金属燃烧试验研究进展

doi: 10.13224/j.cnki.jasp.20200378
详细信息
    作者简介:

    许培辉(1992-),男,博士生,主要从事金属燃料研究。E-mail:phxu@zju.edu.cn

    通讯作者:

    刘建忠(1965-),男,教授、博士生导师,博士,主要从事金属燃料研究。E-mail:jzliu@zju.edu.cn

  • 中图分类号: V512+.4

Experimental research progress in combustion of metal under microgravity

  • 摘要: 以自由落体、抛物线飞行和模拟微重力流场3种典型的微重力试验原理,综述了微重力环境下气溶胶、颗粒和棒状3种形态的金属材料燃烧研究,包括镁、铝、钛等。详细介绍了微重力对金属燃烧速度、火焰结构、相变过程及特有的燃烧现象等特性的影响机理,阐述了微重力环境对揭示金属燃烧固有属性的优势,综述了现有微重力试验系统的优缺点和模拟微重力流场方法的可行性。研究结果表明:由于创造微重力环境较难且成本较大,限制了金属燃烧固有属性及弱效应对其影响的研究。建议从微重力试验条件、弱效应对金属燃烧行为的影响、微重力下传热传质变化对燃烧化学反应的微观影响机理方面进一步研究。

     

  • [1] SUNDARAM D, YANG V, YETTER R A. Metal-based nanoenergetic materials:synthesis, properties, and applications[J].Progress in Energy and Combustion Science, 2017, 61(1):293-365.
    [2] ABBUD-MADRID A, MODAK A, BRANCH M C, et al. Combustion of magnesium with carbon dioxide and carbon monoxide at low gravity[J].Journal of Propulsion and Power, 2001,17(4):852-859.
    [3] CATALDO C E.Lox/Gox related failures during space shuttle main engine development[R].NASA TM-82424,1981.
    [4] PALEČKA J, SNIATOWSKY J, GOROSHIN S, et al. A new kind of flame:observation of the discrete flame propagation regime in iron particle suspensions in microgravity[J]. Combustion and Flame,2019,209(11):180-186.
    [5] SACKSTEDER K R.Facilities for microgravity combustion research[R].NASA TM-102014 IAF-88-355,1988.
    [6] SHARP L M, DIETRICH D L, MOTIL B J. Microgravity fluids and combustion research at NASA Glenn Research Center[J].Journal of Aerospace Engineering,2013,26(2):439-450.
    [7] STEINBERG T A,WILSON D B,BENZ F J.Microgravity and normal gravity combustion of metals and alloys in high pressure oxygen[C]//Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres.Philadelphia, US:American Society for Testing and Materials,1993:133-145.
    [8] FEIEREISEN T J,BRANCH M C,ABBUD-MADRID A, et al.Gravity and pressure effects on the steady-state temperature of heated metal specimens in a pure oxygen atmosphere[C]//Flammability and Sensitivity of Materials in OxygenEnriched Atmospheres. Philadelphia, US:American Society for Testing and Materials,1993:196-210.
    [9] WILSON D B,STEINBERG T A,DEWIT J R.The presence of excess oxygen in burning metallic materials[C]//Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres.West Conshohocken, US:American Society for Testing and Materials,2000:145-162.
    [10] ABBUD-MADRID A,MCKNIGHT C,BRANCH M C,et al.Buoyancy and pressure effects on bulk metal-oxygen reactions[C]//Proceedings of 36th AIAA Aerospace Sciences Meeting and Exhibit.Reno, US:American Institute of Aeronautics and Astronautics,1998:570-576.
    [11] KUMAGAI S, ISODA H. Combustion of fuel droplets in a falling chamber[J]. Symposium(International) on Combustion,1957,6(1):726-731.
    [12] KOLESNIKOV V J,KUSNEZOV G P,LEPUNSKII O I. Some observations on aluminium particle combustion at zero gravity[J].Fizika Gorenca I Vzpiva,1978,16(5):146-148.
    [13] BALLAL D R. Flame propagation through dust clouds of carbon, coal, aluminium and magnesium in an environment of zero gravity[J]. Proceedings of the Royal Society of London Series:A Mathematical and PhysicalSciences,1983,385(1788):21-51.
    [14] PROTSCH R W. Eurotube-Saar:A European drop shaft facility[J].Advances in Space Research,1991,11(7):119-121.
    [15] 刘春辉. 微重力落塔试验设备[J]. 强度与环境,1993,20(4):41-52. LIU Chunhui.Microgravity drop tower facilities[J].Structure and Environment Engineering, 1993, 20(4):41-52.(in Chinese)
    [16] NASA. 2.2 second drop tower[EB/OL].[2020-05-10]. https://www1.grc.nasa.gov/facilities/drop/.
    [17] NASA.Zero gravity research facility[EB/OL].[2020-05-10]. https://www1.grc.nasa.gov/facilities/zero-g.
    [18] REITER T. ESA users guide to low gravity platforms[M]. Paris:Directorate of Human Spaceflight and Operations,European Space Agency,2014.
    [19] 张孝谦,韦明呈. 微重力燃烧研究用落塔[J]. 工程热物理学报,1995,16(4):503-506. ZHANG Xiaoqian,WEI Mingcheng.Microgravity drop tower[J]. Journal of Engineering Thermophysics, 1995, 16(4):503-506.(in Chinese)
    [20] 中国科学院力学研究所. 微重力落塔[EB/OL].[2020-05-10]. http://www.imech.ac.cn/zcxt/kyzb/tszb/201212/t20121221_3726953.html.
    [21] 张孝谦,韦明呈,张培元,等. 微重力燃烧实验落塔技术改进[J].工程热物理学报,1998,19(4):519-523. ZHANG Xiaoqian, WEI Mingcheng, ZHANG Peiyuan, et al. A lift-up and free-fall experiment technique for studying microgravity combustion[J].Journal of Engineering Thermophysics,1998,19(4):519-523.(in Chinese)
    [22] ABBUD-MADRID A, OMALY P, BRANCH M C, et al. Combustion of metals in reduced-gravity and extraterrestrial environments[C]//Proceedings of 5th International Microgravity Combustion Workshop. Cleveland,US:National Aeronautics and Space Administration,1999:211-214.
    [23] ANDRZEJAK T A, SHAFIROVICH E, VAMA A. Ignition of aluminum particles coated by nickel or iron studies under normal and reduced gravity conditions[C]//Proceedings of 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cincinnati,US:American Institute of Aeronautics and Astronautics,2007:1-16.
    [24] DREIZIN E L. Experimental study of aluminum particle flame evolution in normal and micro-gravity[J]. Combustion and Flame,1999,116(3):323-333.
    [25] LEGRAND B,CHAUVEAU C,SHAFIROVICH E,et al. Combustion of magnesium particles in carbon dioxide under microgravity conditions[J].Journal de Physique,2001,11(6):311-314.
    [26] GOROSHIN S,TANG F D,HIGGINS A J,et al.Laminar dust flames in a reduced-gravity environment[J].Acta Astronautica,2011,68(7/8):656-666.
    [27] MALCHI J Y,YETTER R A,SON S F,et al.Nano-aluminum flame spread with fingering combustion instabilities[J]. Proceedings of the Combustion Institute,2007,31(2):2617-2624.
    [28] MALCHI J Y,PROSSER J,YETTER R A,et al.Realizing microgravity flame spread characteristics at 1 g over a bed of nano-aluminum powder[J]. Proceedings of the Combustion Institute,2009,32(2):2437-2444.
    [29] PU Y, PODFILIPSKI J, JAROSINSKI J.Constant volume combustion of aluminum and cornstarch dust in microgravity[J].Combustion Science and Technology,1998,135(1):255-267.
    [30] DREIZIN E L,HOFFMANN V K.Constant pressure com-bustion of aerosol of coarse magnesium particles in microgravity[J].Combustion and Flame,1999,118(1/2):262-280.
    [31] DREIZIN E L,HOFFMANN V K.Experiments on magnesium aerosol combustion in microgravity[J].Combustion and Flame,2000,122(1):20-29.
    [32] DREIZIN E L,SHOSHIN Y L,MURDYY R S,et al.Reaction mechanisms and particle interaction in burning twophase systems[R].NASA/CP-2001-210826,2001.
    [33] DREIZIN E L,SHOSHIN Y L,MUDRYY R S,et al.Constant pressure flames of aluminum and aluminum-magnesium mechanical alloy aerosols in microgravity[J]. Combustion and Flame,2002,130(4):381-385.
    [34] DREIZIN E L, HOFFMANN V K, VICENZI E P. Hightemperature phases in ternary Zr-O-N systems[J]. Journal of Materials Research,1999,14(10):3840-3842.
    [35] DREIZIN E L, BERMAN C H, HOFFMANN V K, et al. Combustion of aerosolized metal particles in microgravity[C]//Proceedings of 5th International Microgravity Combustion Workshop. Cleveland,US:National Aeronautics and Space Administration,1999:215-218.
    [36] TANG F D, GOROSHIN S, HIGGINS A J, et al. Flame propagation and quenching in iron dust clouds[J]. Proceedings of the Combustion Institute,2009,32(2):1905-1912.
    [37] TANG F D,GOROSHIN S,HIGGINS A J.Modes of particle combustion in iron dust flames[J]. Proceedings of the Combustion Institute,2011,33(2):1975-1982.
    [38] LEE J, PERALDI O, KNYSTAUTAS R. Microgravity combustion of dust suspension[C]//Proceedings of 37th AIAA Aerospace Sciences Meeting and Exhibit.Reno:American Institute of Aeronautics and Astronautics,1993:714-720.
    [39] RONNEY P D.Premixed-gas flames, microgravity combustion:fire in free fall[M].London:Academic Press,2002.
    [40] ZIK O, MOSES E. Fingering instability in combustion:An extended view[J].Physical Review:E,1999,60(1):518-531.
    [41] ZIK O,MOSES E.Fingering instability in solid fuel combustion:The characteristic scales of the developed state[J].Symposium(International) on Combustion, 1998, 27(2):2815-2820.
    [42] ABBUD-MADRID A, BRANCH M C, DAILY J W. Ignition and combustion of bulk titanium and magnesium at normal and reduced gravity[J]. Symposium (International) on Combustion,1996,26(2):1929-1936.
    [43] ABBUD-MADRID A, STROUD C, OMALY P, et al. Combustion of bulk magnesium in carbon dioxide under reduced-gravity conditions[C]//Proceedings of 37th AIAA Aerospace Sciences Meeting and Exhibit. Reno, US:American Institute of Aeronautics and Astronautics,1999:695-703.
    [44] DREIZIN E L. Effect of phase changes on metal-particle combustion processes[J]. Combustion Explosion and Shock Waves,2003,39(6):681-693.
    [45] CHECHULIN V L.About the effect of magnetic field on the quality of combustion of liquid organic fuel[J]. Russian Journal of Applied Chemistry,2009,82(4):748-750.
    [46] ERMOLINE A, SCHOENITZ M, HOFFMANN V K, et al. Experimental technique for studying high-temperature phases in reactive molten metal based systems[J].Review of Scientific Instruments,2004,75(12):5177-5185.
    [47] ZENIN A, KUZNETSOV G, KOLESNIKOV V.Combustion of aluminum-magnesium alloy particles under microgravity conditions[J].Russian Journal of Physical Chemistry:B,2011,5(1):84-96.
    [48] ZENIN A, KUSNEZOV G, KOLESNIKOV V. Physics of alumimum particle combustion at zero-gravity[C]//Proceedings of 37th AIAA Aerospace Sciences Meeting and Exhibit. Reno, US:American Institute of Aeronautics and Astronautics,1999:696-701.
    [49] ANDRZEJAK T A,SHAFIRVOICH E,VARMA A.Ignition of iron-coated and nickel-coated aluminum particles under normal- and reduced-gravity conditions[J].Journal of Propulsion and Power,2008,24(4):805-813.
    [50] ANDRZEJAK T A. Experimental studies on the ignition of single Ni/Al, Fe/Al, and Ti particles[D]. West Lafayette, US:Purdue University,2007.
    [51] MORTAZAVI S, SUNDERLAND P B, JURNG J, et al. Structure and soot properties of non-buoyant laminar roundjet diffusion flames[C]//Proceedings of 2nd International Microgravity Combustion Workshop. Cleveland,US:National Aeronautics and Space Administration,1993:107-113.
    [52] STEINBERG T A, WILSON D B, BENZ F. The burning of metals and alloys in microgravity[J]. Combustion and Flame,1992,88(3/4):309-320.
  • 加载中
计量
  • 文章访问数:  70
  • HTML浏览量:  11
  • PDF量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回