留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速飞行器防热减阻新概念构型的气动性能

张帅

张帅. 高速飞行器防热减阻新概念构型的气动性能[J]. 航空动力学报, 2021, 36(11): 2292-2305. doi: 10.13224/j.cnki.jasp.20200477
引用本文: 张帅. 高速飞行器防热减阻新概念构型的气动性能[J]. 航空动力学报, 2021, 36(11): 2292-2305. doi: 10.13224/j.cnki.jasp.20200477
ZHANG Shuai. Aerodynamic performance of new conceptual configuration of high speed vehicle's heat flux and drag reduction[J]. Journal of Aerospace Power, 2021, 36(11): 2292-2305. doi: 10.13224/j.cnki.jasp.20200477
Citation: ZHANG Shuai. Aerodynamic performance of new conceptual configuration of high speed vehicle's heat flux and drag reduction[J]. Journal of Aerospace Power, 2021, 36(11): 2292-2305. doi: 10.13224/j.cnki.jasp.20200477

高速飞行器防热减阻新概念构型的气动性能

doi: 10.13224/j.cnki.jasp.20200477
详细信息
    作者简介:

    张帅(1995-),男,助理工程师,硕士,主要从事高超声速气动防热减阻研究。E-mail:317898841@qq.com

  • 中图分类号: V423.6

Aerodynamic performance of new conceptual configuration of high speed vehicle's heat flux and drag reduction

  • 摘要: 提出了一种高速飞行条件下兼具防热减阻的凹腔槽道气动构型,建立了凹腔深宽比为1,槽道高度分别为0、10、20、30、40 mm的凹腔槽道构型,以及槽道入口高度固定为30 mm,出口高度分别为35、40、45、50 mm的扩张型凹腔槽道构型。采用求解Navier-Stokes(N-S)方程方法进行计算,获得了不同算例的鼻锥外壁面热流密度分布以及构型阻力系数的变化情况,分析了凹腔槽道构型参数对气动热与气动力性能的影响。数值结果表明凹腔槽道构型能够达到预期的防热减阻效果。较优构型(槽道进出口高度比为30/50)的防热率与减阻率分别达到40.1%和16.8%。槽道高度越高,减阻效果越好,但防热效率降低。相较于平直型凹腔槽道,扩张型凹腔槽道构型能够在保证防热率不变的情况下显著提升减阻性能。

     

  • [1] HUANG Wei.A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J].Journal of Zhejiang University:Science A Applied Physics and Engineering,2015,16(7):551-561.
    [2] WANG Zhenguo,SUN Xiwan,HUANG Wei,et al.Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows:a survey[J].Acta Astronautica,2016,129:95-110.
    [3] LI Shibin,WANG Zhenguo,HUANG Wei,et al.Analysis of flowfield characteristics for equal polygon opposing jet on different freeflow conditions[J].Acta Astronautica,2017,133:50-62.
    [4] GERDROODBARY M B,FALLAH K,POURMIRZAAGHA H.Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor[J].Acta Astronautica,2017,132:25-32.
    [5] ZHANG Ruirui,HUANG Wei,LI Langquan,et al.Drag and heat flux reduction induced by the pulsed counterflowing jet with different periods on a blunt body in supersonic flows[J].International Journal of Heat and Mass Transfer,2018,127:503-512.
    [6] ZHANG Ruirui,HUANG Wei,YAN Li,et al.Drag and heat flux reduction induced by the pulsed counterflowing jet with different waveforms on a blunt body in supersonic flows[J].Acta Astronautica,2019,160:635-645.
    [7] DONG Hao,DENG Fan,XIE Feng,et al.Drag reduction effect for hypersonic lifting-body vehicle with counterflowing jet[J].Transactions of Nanjing University of Aeronautics and Astronautics,2018,35(5):789-799.
    [8] RONG Yisheng.Drag reduction research in supersonic flow with opposing jet[J].Acta Astronautica,2013,91:1-7.
    [9] DASO E O,PRITCHETT V E,WANG T S,et al.The dynamics of shock dispersion and interactions in supersonic freestreams with counterflowing jets[R].AIAA-2007-1423,2007.
    [10] GERDROODBARY M B,BISHEHSARI S,HOSSEINALIPOUR S M,et al.Transient analysis of counterflowing jet over highly blunt cone in hypersonic flow[J].Acta Astronautica,2012,73:38-48.
    [11] SATHEESH K,REDDY K,JAGADEESH G.Concentrated electrical energy deposition can reduce the wave drag around blunt bodies flying at hypersonic Mach number[J].Physical Review:B,2006,57(20):13235-13240.
    [12] GANESH A M,JOHN B.Concentrated energy addition for active drag reduction in hypersonic flow regime[J].Acta Astronautica,2018,142:221-231.
    [13] SATHEESH K,JAGADEESH G.Effect of concentrated energy deposition on the aerodynamic drag of a blunt body in hypersonic flow[J].Physics of Fluids,2007,19(3):31701.1-31701.4.
    [14] BIBIN J,VINAYAK K.Investigation of energy deposition technique for drag reduction at hypersonic speeds[J].Applied Mechanics and Materials,2013,367:222-227.
    [15] TAGUCHI S,OHNISHI N,FURUDATE M,et al.Numerical analysis of drag reduction for supersonic blunt body by pulse energy deposition[R].AIAA-2007-1235,2007.
    [16] SPERBER D,ECKEL H A,STEIMER S,et al.Objectives of laser-induced energy deposition for active flow control[J].Contributions to Plasma Physics,2012,52(7):636-643.
    [17] JOARDER R.On the mechanism of wave drag reduction by concentrated laser energy deposition in supersonic flows over a blunt body[J].Shock Waves,2019,29(4):487-497.
    [18] KALIMUTHU R,RATHAKRISHNAN E.Aerospike for drag reduction in hypersonic flow[R].AIAA-2008-4707,2008.
    [19] YADAV R,GUVEN U.Aerothermodynamics of a hypersonic projectile with a double-disk aerospike[J].Aeronautical Journal,2013,117(1195):913-928.
    [20] YADAV R,VELIDI G,GUVEN U.Aerothermodynamics of generic re-entry vehicle with a series of aerospikes at nose[J].Acta Astronautica,2014,96:1-10.
    [21] HUANG Wei,LI Langquan,YAN Li,et al.Drag and heat flux reduction mechanism of blunted cone with aerodisks[J].Acta Astronautica,2017,138:168-175.
    [22] SAHOO D,DAS S,KUMAR P,et al.Effect of spike on steady and unsteady flow over a blunt body at supersonic speed[J].Acta Astronautica,2016,128:521-533.
    [23] KULKARNI V,MENEZES V,REDDY K.Effectiveness of aerospike for drag reduction on a blunt cone in hypersonic flow[J].Journal of Spacecraft and Rockets,2010,47(3):542-544.
    [24] ESFEH M K,TAJALLI S M,LIU P.Evaluation of aerospike for drag reduction on a blunt nose using experimental and numerical modeling[J].Acta Astronautica,2019,160:656-671.
    [25] WYSOCKI O,SCHüLEIN E,SCHNEPF C.Experimental study on wave drag reduction at slender bodies by a self-aligning aerospike[J].Notes on Numerical Fluid Mechanics and Multidisciplinary Design,2014,124:583-590.
    [26] GERDROODBARY M B,HOSSEINALIPOUR S M.Numerical simulation of hypersonic flow over highly blunted cones with spike[J].Acta Astronautica,2010,67(1/2):180-193.
    [27] PISH F,MORADI R,EDALATPOUR A,et al.The effect of coolant injection from the tip of spike on aerodynamic heating of nose cone at supersonic flow[J].Acta Astronautica,2019,154:52-60.
    [28] Min OU,YAN Li,HUANG Wei,et al.Design exploration of combinational spike and opposing jet concept in hypersonic flows based on CFD calculation and surrogate model[J].Acta Astronautica,2019,155:287-301.
    [29] ZHANG Ruirui,DONG Minzhou,HUANG Wei,et al.Drag and heat flux reduction mechanism induced by the combinational forward-facing cavity and pulsed counterflowing jet configuration in supersonic flows[J].Acta Astronautica,2019,160:62-75.
    [30] HUANG Wei,CHEN Zheng,YAN Li,et al.Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows:a review[J].Progress in Aerospace Sciences,2019,105:31-39.
    [31] HUANG Wei,YAN Li,LIU Jun,et al.Drag and heat reduction mechanism in the combinational opposing jet and acoustic cavity concept for hypersonic vehicles[J].Aerospace Science and Technology,2015,42:407-414.
    [32] HUANG Wei,LIU Jun,XIA Zhixun.Drag reduction mechanism induced by a combinational opposing jet and spike concept in supersonic flows[J].Acta Astronautica,2015,115:24-31.
    [33] HUANG Wei,JIANG Yanping,YAN Li,et al.Heat flux reduction mechanism induced by a combinational opposing jet and cavity concept in supersonic flows[J].Acta Astronautica,2016,121:164-171.
    [34] SUN Xiwan,HUANG Wei,GUO Zhenyun,et al.Multiobjective design optimization of hypersonic combinational novel cavity and opposing jet concept[J].Journal of Spacecraft and Rockets,2017,54(3):662-671.
    [35] GERDROODBARY M B.Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body[J].Shock Waves,2014,24(5):537-543.
    [36] ZHANG Ruirui,HUANG Wei,YAN Li,et al.Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows[J].Acta Astronautica,2018,146:123-133.
    [37] HARTMANN J.On a new method for the generation of sound-waves[J].Physical Review Journals Archive,1922,20(6):719-727.
    [38] BURBANK P B,STALLINGS R L.Heat-transfer and pressure measurements on a flat-face cylinder at a Mach number range of 2.49 to 4.44[R].NASA-TM-X-19,1959.
    [39] YUCEIL B,DOLLING D,WILSON D.A preliminary investigation of the Helmholtz resonator concept for heat flux reduction[R].AIAA-1993-2742,1993.
    [40] SILTON S I,GOLDSTEIN D B.Ablation onset in unsteady hypersonic flow about nose tip with cavity[J].Journal of Thermophysics and Heat Transfer,2000,14(3):421-434.
    [41] SEILER F,SRULIJES J,PASTOR M G,et al.Heat fluxes inside a cavity placed at the nose of a projectile measured in a shock tunnel at Mach 4.5[J].Notes on Numerical Fluid Mechanics and Multidisciplinary Design,2008,96:309-316.
    [42] SELVARAJ S,GOPALAN J,REDDY K.Investigation of missile-shaped body with forward-facing cavity at Mach 8[J].Journal of Spacecraft and Rockets,2009,46(3):577-591.
    [43] GUPTA A,RUFFIN S,NEWFIELD M,et al.Aerothermodynamic performance enhancement and design of sphere-cones using the artificially blunted leading edge concept[R].AIAA-1999-897,1999.
    [44] ANAZADEHSAYED A,GERDROODBARY M B,AMINI Y,et al.Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow[J].Acta Astronautica,2017,137:403-414.
    [45] LI Junzhe,YAN Chao,KE Lun,et al.Research on scheme effect of computational fluid dynamics in aerothermal[J].Journal of Beijing University of Aeronautics and Astronautics,2003,29(11):1022-1025.
    [46] PAN Jing,YAN Chao,GENG Yunfei.Aerothermodynamic of the waveriders applying artificially blunted leading edge concept[R].AIAA-2009-748,2009.
    [47] SUN Xiwan,HUANG Wei,Min OU,et al.A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows[J].Chinese Journal of Aeronautics,2019,32(4):771-784.
    [48] ENGBLOM W A,GOLDSTEIN D B,LADOON D,et al.Fluid dynamics of hypersonic forward-facing cavity flow[J].Journal of Spacecraft and Rockets,1997,34(4):437-444.
    [49] ENGBLOM W A,YUCEIL B,GOLDSTEIN D B,et al.Experimental and numerical study of hypersonic forward-facing cavity flow[J].Journal of Spacecraft and Rockets,1996,33(3):353-359.
    [50] 张帅,方蜀州,郭建.头部钝化的无翼航天器气动性能研究[J].飞行力学,2020,38(6):56-62,69.
  • 加载中
计量
  • 文章访问数:  122
  • HTML浏览量:  6
  • PDF量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-08
  • 刊出日期:  2021-11-28

目录

    /

    返回文章
    返回