留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生减阻翼型的气动性能

张子良 张明明

张子良, 张明明. 仿生减阻翼型的气动性能[J]. 航空动力学报, 2021, 36(8): 1740-1748. doi: 10.13224/j.cnki.jasp.20200485
引用本文: 张子良, 张明明. 仿生减阻翼型的气动性能[J]. 航空动力学报, 2021, 36(8): 1740-1748. doi: 10.13224/j.cnki.jasp.20200485
ZHANG Ziliang, ZHANG Mingming. Aerodynamic performance for bionic drag-reducing airfoil[J]. Journal of Aerospace Power, 2021, 36(8): 1740-1748. doi: 10.13224/j.cnki.jasp.20200485
Citation: ZHANG Ziliang, ZHANG Mingming. Aerodynamic performance for bionic drag-reducing airfoil[J]. Journal of Aerospace Power, 2021, 36(8): 1740-1748. doi: 10.13224/j.cnki.jasp.20200485

仿生减阻翼型的气动性能

doi: 10.13224/j.cnki.jasp.20200485
基金项目: 

国家自然科学基金(51736008);中国科学院洁净能源先导科技专项(XDA21050303)

详细信息
    作者简介:

    张子良(1990-),男,博士生,主要从事风力机空气动力学、风电场微观选址研究。

  • 中图分类号: V211;TK81

Aerodynamic performance for bionic drag-reducing airfoil

  • 摘要: 利用一种基于滑移边界理论的仿生肋条结构的模化方法,对仿生减阻翼型的气动性能开展了数值模拟研究。结果显示:肋条结构同时布置在翼型压力面和吸力面湍流区域时,仿生减阻翼型的阻力可降低1.73%~3.07%,升阻比可提高2.10%~4.08%,其中黏性阻力的减小是总阻力下降的主要原因。对流场分析表明,仿生减阻翼型的速度曲线出现一定抬升,使得湍流边界层中的黏性子层增厚,进而导致了仿生减阻翼型气动性能的提升。

     

  • [1] WALSH M J. Riblets as a viscous drag reduction technique[J].AIAA Journal,1983,21(4):485-486.
    [2] 胡海豹,宋保维,刘占一, 等. 基于湍流边界层时均速度分布的脊状表面减阻规律研究[J]. 航空动力学报, 2009, 24(5):1040-1047. HU Haibao,SONG Baowei,LIU Zhanyi,et al. Research about the characteristic of drag reduction over riblets surface based on average velocity profile in the turbulent boundary layer[J]. Journal of Aerospace Power,2009,24(5):1040-1047.(in Chinese)
    [3] ZHANG Z L,ZHANG M M,CAI C,et al.Characteristics of large-and small-scale structures in the turbulent boundary layer over a drag-reducing riblet surface[J]. Journal of Mechanical Engineering Science,2020,234(3):796-807.
    [4] 张子良,张明明,徐建中. 肋条湍流减阻机理的研究[J]. 工程热物理学报,2020,41(2):335-341. ZHANG Ziliang, ZHANG Mingming, XU Jianzhong.Investigation on drag reduction mechanism of riblets in turbulent flows[J]. Journal of Engineering Thermophysics, 2020, 41(2):335-341.(in Chinese)
    [5] CHAMORRO L P,ARNDT R E A,SOTIROPOULOS F. Drag reduction of large wind turbine blades through riblets:Evaluation of riblet geometry and application strategies[J]. Renewable Energy,2013,50:1095-1105.
    [6] ZHANG Y,CHEN H,FU S,et al.Numerical study of an airfoil with riblets installed based on large eddy simulation[J]. Aerospace Science and Technology,2018,78:661-670.
    [7] AUPOIX B, PAILHAS G, HOUDEVILLE R. Towards a general strategy to model riblet effects[J]. AIAA Journal, 2012,50(3):708-716.
    [8] MELE B, TOGNACCINI R. Numerical simulation of riblets on airfoils and wings[R].AIAA-2012-0861,2012.
    [9] MELE B,TOGNACCINI R,CATALANO P.Performance assessment of a transonic wing-body configuration with riblets installed[J].Journal of Aircraft,2016,53(1):129-140.
    [10] OKABAYASHI K, MATSUE T, ASAI M, et al. RANS modeling for flows on riblets based on experimental data[C]//Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences(ICAS).St Petersburg, Russia:ICAS,2014:7-12.
    [11] KOEPPLIN V, HERBST F, SEUME J R. Correlation-based riblet model for turbomachinery applications[J]. Journal of Turbomachinery,2017,139(7):071006.1-071006.10.
    [12] MELE B,TOGNACCINI R.Slip lengt-based boundary condition for modeling drag reduction devices[J].AIAA Journal, 2018,56(9):3478-3490.
    [13] BLIAMIS C, VLAHOSTERGIOS Z, MISIRLIS D, et al. Modeling surface riblets skin friction reduction effect with the use of computational fluid dynamics[J]. Chemical Engineering Transactions,2020,81:595-600.
    [14] 王二丹,田海平,张静娴, 等. 超疏水壁面湍流边界层减阻机理的TRPIV实验[J]. 航空动力学报,2016,31(12):2870-2877. WANG Erdan, TIAN Haiping, ZHANG Jingxian, et al. TRPIV experimental investigation of drag-reduction mechanism in turbulent boundary layer over super hydrophobic surfaces[J]. Journal of Aerospace Power, 2016, 31(12):2870-2877.(in Chinese)
    [15] ZHANG Z, ZHANG M, CAI C, et al. A general model for riblets simulation in turbulent flows[J]. International Journal of Computational Fluid Dynamics,2020,34(5):333-345.
    [16] GARCÍA-MAYORAL R, JIMÉNEZ J. Hydrodynamic stability and breakdown of the viscous regime over riblets[J]. Journal of Fluid Mechanics,2011,678:317-347.
    [17] TANG Z, JIANG N, ZHENG X, et al. Bursting process of large- and small-scale structures in turbulent boundary layer perturbed by a cylinder roughness element[J].Experiments in Fluids,2016,57:79.
    [18] DEAN R B. Reynolds number dependence of skin friction and other bulk flow variables in two -dimensional rectangular duct flow[J].Journal of Fluid Engineering,1978,100:215-223.
    [19] MIN T, KIM J. Effects of hydrophobic surface on skin-friction drag[J].Physics of Fluids,2004,16(7):55-58.
    [20] CHOI K S. Near-wall structures of a turbulent boundary layer with riblets[J].Journal of Fluid Mechanics,1989,208:417-458.
    [21] BAKHTIARI E. Super-hydrophobicity effects on performance of a dynamic wind turbine blade element under yaw loads[J].Renewable Energy,2019,140:539-551.
    [22] LUO Y.Recent progress in exploring drag reduction mechanism of real sharkskin surface:a review[J].Journal of Mechanics in Medicine and Biology,2015,15(3):1530002.1-1530002.22.
    [23] BECHERT D W,BRUSE M,HAGE W,et al.Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J].Journal of Fluid Mechanics, 1997, 338:59-87.
    [24] LI J, LIU Y, WANG J.Evaluation method of riblets effects and application on a missile surface[J]. Aerospace Science and Technology,2019,95:105418.1-105418.12.
  • 加载中
计量
  • 文章访问数:  145
  • HTML浏览量:  9
  • PDF量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回