留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层壁冷却结构中多排射流冲击冷却的换热和流阻特性

韦宏 祖迎庆

韦宏, 祖迎庆. 双层壁冷却结构中多排射流冲击冷却的换热和流阻特性[J]. 航空动力学报, 2021, 36(8): 1621-1632. doi: 10.13224/j.cnki.jasp.20200486
引用本文: 韦宏, 祖迎庆. 双层壁冷却结构中多排射流冲击冷却的换热和流阻特性[J]. 航空动力学报, 2021, 36(8): 1621-1632. doi: 10.13224/j.cnki.jasp.20200486
WEI Hong, ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power, 2021, 36(8): 1621-1632. doi: 10.13224/j.cnki.jasp.20200486
Citation: WEI Hong, ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power, 2021, 36(8): 1621-1632. doi: 10.13224/j.cnki.jasp.20200486

双层壁冷却结构中多排射流冲击冷却的换热和流阻特性

doi: 10.13224/j.cnki.jasp.20200486
基金项目: 

上海市自然科学基金(19ZR1402500);上海市商用航空发动机领域联合创新计划(AR908)

详细信息
    作者简介:

    韦宏(1988-),男,博士,主要从事航空发动机热端部件冷却技术和高超声速飞行器预冷器的结霜和抑霜等方面的研究。

    通讯作者:

    祖迎庆(1978-),男,副研究员,博士,主要从事航空发动机气动热力学研究。E-mail:yzu@fudan.edu.cn

  • 中图分类号: V231.1

Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure

  • 摘要: 采用稳态热敏液晶技术对双层壁冷却结构中的多排(包括顺排和叉排)射流冲击冷却结构进行了风洞实验,同时结合数值模拟的方法,对两种射流冲击冷却结构的传热和流阻特性的差异进行了研究。实验结果表明:流量系数和冲击靶板上的努塞尔数均随着雷诺数的增大而增大,而冲击孔的排布方式对面平均努塞尔数的影响较小,但是叉排结构的流量系数高于顺排结构,且冲击靶板上换热更加均匀。数值结果显示冲击靶板中心区域的流量分配和换热均随着冲击距离的增大而增大;而在下游区域内恰好与之相反。

     

  • [1] HAM J C,DUTTA S,EKKAD S.Gas turbine heat transfer and cooling technology[M].2nd ed.New York:Taylor & Francis Group, 2012:14-67.
    [2] LEE J,REN Z,LIGRANI P,et al.Crossflows from jet array impingement cooling:hole spacing, target plate distance, Reynolds number effects[J].International Journal of Thermal Sciences,2015,88:7-18.
    [3] JANG J H, CHUI H C, YAN W M. Impinging cooling of film hole surface using transient liquid crystal thermograph[J].International Communication in Heat and Mass Transfer, 2013,44:23-30.
    [4] FECHTER S,TERZIS A,OTT P,et al.Experimental and numerical investigation of narrow impingement cooling channels[J]. International Journal of Heat and Mass Transfer, 2013,67:1208-1219.
    [5] RAO Y, LIU Y Y, WAN C Y. Multiple-jet impingement heat transfer in double wall cooling structures with pin fins and effusion holes[J]. International Journal of Thermal Sciences,2018,133:106-119.
    [6] LIU H Y,KONG M Z,LIU S L,et al.The effect of jet array arrangement on the flow characteristics of the outlet hole in short confined channels[J]. Heat Transfer, 2008, 37(1):20-28.
    [7] CHEN L L,BRAKMANN R G A,WEIGAND B,et al.Experimental and numerical heat transfer investigation of an im-pingement jet array with V-ribs on the target plate and on the impingement plate[J]. International Journal of Heat and Fluid Flow,2017,68:126-138.
    [8] LI X Y,REN J,JIANG H D.Film cooling effectiveness distribution of cylindrical hole injections at different locations on a vane endwall[J].International Journal of Heat and Mass Transfer,2015,90:1-14.
    [9] KIM S H,AHN K H,PARK J S,et al.Local heat and mass transfer measurements for multi-layered impingement/effusion cooling:Effects of pin spacing on the impingement and effusion plate[J]. International Journal of Heat and Mass Transfer,2017,105:712-722.
    [10] LIU H Y,LIU S L,QIANG H F,et al.Aerodynamic investigation of impingement cooling in a confined channel with staggered jet array arrangement[J]. Experimental Thermal and Fluid Science,2013,48:184-197.
    [11] REN Z,VANGA S R,ROGERS N,et al.Internal and external cooling of a full coverage effusion cooling plate:effects of double wall configuration and conditions[J]. International Journal of Thermal Sciences,2018,124:36-49.
    [12] MENSCH A, THOLE K A. Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade endwall[J]. International Journal of Heat and Mass Transfer,2015,82:66-77.
    [13] TAN X M, ZHANG J Z, XU H S. Experimental investigation on impingement/effusion cooling with short normal injection holes[J]. International Communications in Heat and Mass Transfer,2015,69:1-10.
    [14] HONG S K,LEE D H,CHO H H.Effect of jet direction on heat/mass transfer of rotating impingement jet[J]. Applied Thermal Engineering,2009,29(14/15):2914-2920.
    [15] HONG S K, LEE D H, CHO H H, et al. Local heat/mass transfer measurements on effusion plates in impingement/effusion cooling with rotation[J]. International Journal of Heat and Mass Transfer,2010,53:1373-1379.
    [16] QU L H,ZHANG J Z,TAN X M,et al.Numerical investigation on adiabatic film cooling effectiveness and heat transfer coefficient for effusion cooling over a transverse corrugated surface[J]. Chinese Journal of Aeronautics, 2017, 30(2):677-684.
    [17] KHALATOV A A, PANCHENKO N A, SEVERIN S D. Application of cylindrical, triangular and hemispherical dim-ples in the film cooling technology[J].Journal of Physics:Conference Series,2017,891(1):012145.1-012145.6.
    [18] ZHANG J Z,ZHU X D,HUANG Y,et al.Investigation on film cooling performance from a row of round-to-slot holes on flat plate[J]. International Journal of Thermal Sciences, 2017,118:207-225.
    [19] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17.
    [20] 张泽远. 半封闭通道内冲击射流换热特性和流量系数的实验研究[D].南京:南京航空航天大学, 2006. ZHANG Zeyuan.Experiment study of convective heat transfer and discharge coefficient of jet impingement inside semiconfined channel[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2016.(in Chinese)
    [21] 张泽远,张靖周,杨卫华. 半封闭通道射流冲击孔流量系数的实验[J].航空动力学报,2009,24(6):1270-1274. ZHANG Zeyuan,ZHANG Jingzhou,YANG Weihua.Experimental investigation on discharge coefficient of jet impingement holes within semi-confined channel[J].Journal of Aerospace Power,2009,24(6):1270-1274.(in Chinese)
  • 加载中
计量
  • 文章访问数:  201
  • HTML浏览量:  11
  • PDF量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回