留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IRCMNDE和NNCHC的滚动轴承故障诊断

杨潇谊 邓为权 马军

杨潇谊, 邓为权, 马军. 基于IRCMNDE和NNCHC的滚动轴承故障诊断[J]. 航空动力学报, 2022, 37(6): 1150-1161. doi: 10.13224/j.cnki.jasp.20200543
引用本文: 杨潇谊, 邓为权, 马军. 基于IRCMNDE和NNCHC的滚动轴承故障诊断[J]. 航空动力学报, 2022, 37(6): 1150-1161. doi: 10.13224/j.cnki.jasp.20200543
YANG Xiaoyi, DENG Weiquan, MA Jun. Fault diagnosis of rolling bearings based on IRCMNDE and NNCHC[J]. Journal of Aerospace Power, 2022, 37(6): 1150-1161. doi: 10.13224/j.cnki.jasp.20200543
Citation: YANG Xiaoyi, DENG Weiquan, MA Jun. Fault diagnosis of rolling bearings based on IRCMNDE and NNCHC[J]. Journal of Aerospace Power, 2022, 37(6): 1150-1161. doi: 10.13224/j.cnki.jasp.20200543

基于IRCMNDE和NNCHC的滚动轴承故障诊断

doi: 10.13224/j.cnki.jasp.20200543
基金项目: 国家自然科学基金(51765022,61663017); 云南省科技计划项目(2019FD042)
详细信息
    作者简介:

    杨潇谊(1994-),女,硕士生,主要从事滚动轴承故障诊断和性能退化评估方面的研究。

    通讯作者:

    邓为权(1988-),男,讲师,博士,主要从事复合材料无损检测、飞行器结构健康监测方面的研究。E-mail:weiquan.deng@kust.edu.cn

  • 中图分类号: V263.6;TH17;TN911.7

Fault diagnosis of rolling bearings based on IRCMNDE and NNCHC

  • 摘要: 针对多尺度散布熵(MDE)在粗粒化过程中易发生信息丢失、产生虚假信息,难以全面提取轴承故障信息的问题,提出了基于改进的精细复合多尺度归一化散布熵(IRCMNDE)和最近邻凸包分类(NNCHC)的滚动轴承故障诊断方法。引入精细复合多尺度散布熵(RCMDE),将其粗粒化过程中平均值替换为最大值来表示数据段信息,以克服传统粗粒化过程的不足并突出故障特征。通过归一化操作减弱熵值计算时不同参数选择导致的熵值波动幅度,得到IRCMNDE。将IRCMNDE作为故障特征,使用NNCHC分类器对故障特征进行分类。经实验验证,该方法可达到98.98%的故障识别准确率,相比基于MDE(故障识别准确率为95.99%)和RCMDE(故障识别准确率为97.60%)的方法,能够更准确地提取滚动轴承的故障特征信息,提高承故障分类的准确性。

     

  • [1] 杨旭,邱明,陈立海,等.基于PSO-RWE的自适应小波阈值函数滚动轴承振动信号去噪方法[J].航空动力学报,2020,35(11):2339-2347.
    [2] DANG Zhang,Yong Lü,LI Yourong.Improved dynamic mode decomposition and its application to fault diagnosis of rolling bearing[J].Sensors,2018,18(6):18061972.1-18061972.15.
    [3] CHEN Yinsheng,ZHANG Tinghao,LUO Zhongming,et al.A novel rolling bearing fault diagnosis and severity analysis method[J].Applied Sciences-Basel,2019,9(11):9112356.1-9112356.23.
    [4] AN Xueli,PAN Luoping.Wind turbine bearing fault diagnosis based on adaptive local iterative filtering and approximate entropy[J].Proceedings of the Institution of Mechanical Engineering:Part C Journal of Mechanical Engineering Science,2016,231(17):3228-3237.
    [5] 赵志宏,杨绍普.基于小波包变换与样本熵的滚动轴承故障诊断[J].振动、测试与诊断,2012,32(4):640-644,692.
    [6] 戚晓利,王振亚,吴保林,等.基于ACMPE、ISSL-Isomap和GWO-SVM的行星齿轮箱故障诊断[J].航空动力学报,2019,34(4):744-755.
    [7] YAN R,GAO R X.Approximate entropy as a diagnostic tool for machine health monitoring[J].Mechanical and System Signal Process,2007,21(2):824-839.
    [8] 向丹,葛爽.基于EMD样本熵-LLTSA的故障特征提取方法[J].航空动力学报,2014,29(7):1535-1542.
    [9] WANG Heng,CHEN Jinhai,ZHOU Yiwen,et al.Early fault diagnosis of rolling bearing based on noise-assisted signal feature enhancement and stochastic resonance for intelligent manufacturing[J].The International Journal of Advanced Manufacturing Technology,2020,107(3/4):1017-1023.
    [10] MOSTAFA R,HAMED A.Dispersion entropy:a measure for time-series analysis[J].IEEE Signal Processing Letter,2016,23(5):610-614.
    [11] AZAMI H,ESCUDERO J.Coarse-Graining approaches in univariate multiscale sample and dispersion entropy[J].Entropy,2018,20(2):9112356.1-9112356.
    [12] GAN Xiong,LU Hong,YANG Guangyong.Fault diagnosis method for rolling bearings based on composite multiscale fluctuation dispersion entropy[J].Entropy,2019,21(3):21030290.1-21030290.15.
    [13] ZHANG Yidong,TONG Shuiguang,CONG Feiyun,et al.Research of feature extraction method based on sparse reconstruction and multiscale dispersion entropy[J].Applied Sciences,2018,8(6):8060888.1- 8060888.23.
    [14] YANG Xiaoan,JIA Minping.Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection[J].Knowledge-Based Systems,2018,163(9):450-471.
    [15] AZAMI H,ROSTAGHI M,ABASOLO D,et al.Refined composite multiscale dispersion entropy and its application to biomedical signals[J].IEEE Transactions on Biomedical Engineering 2017,64(12):2872-2879.
    [16] 李艳军,张建,曹愈远,等.基于模糊信息粒化和优化SVM的航空发动机性能趋势预测[J].航空动力学报,2017,32(12):3022-3030.
    [17] 徐冠基,曾柯,柏林.基于SPSO优化multiple kernel-TWSVM的滚动轴承故障诊断[J].振动、测试与诊断,2019,39(5):973-979,1130.
    [18] ZHOU Xiaofei,SHI Yong.Nearest neighbor convex hull classification method for face recognition[R]∥Baton Rouge,US:the 9th International Conference on Computational Science,2009.
    [19] 曾鸣.基于凸包的模式识别方法及其在滚动轴承故障诊断中的应用[D].长沙:湖南大学,2016.
    [20] 杨宇,曾鸣,程军圣.基于局部特征尺度分解和核最近邻凸包分类算法的滚动轴承故障诊断方法[J].振动工程学报,2013,26(1):118-126.
    [21] 吴守军,冯辅周,吴春志,等.基于VMD-DE的坦克行星变速箱故障诊断方法研究[J].振动与冲击,2020,39(10):170-179.
    [22] ZHAO Dongfang,LIU Shulin,GU Dan,et al.Improved multi-scale entropy and it's application in rolling bearing fault feature extraction[J].Measurement,2020,152:107361.1-107361.16.
    [23] 曾鸣,杨宇,郑近德,等.基于LCD和KNNCH分类算法的齿轮故障诊断方法[J].中国机械工程,2014,25(15):2049-2054.
    [24] MOSTAFA R,REZA A M,HAMED A.Application of dispersion entropy to status characterization of rotary machines[J].Journal of Sound and Vibration,2018,438:291-308.
    [25] ZHANG,ZHOU.A comprehensive fault diagnosis method for rolling bearings based on refined composite multiscale dispersion entropy and fast ensemble empirical mode decomposition[J].Entropy,2019,21(7):21070680.1-21070680.20.
    [26] 张小龙,张氢,秦仙蓉,等.基于ITD复杂度和PSO-SVM的滚动轴承故障诊断[J].振动与冲击,2016,35(24):102-107,138.
  • 加载中
计量
  • 文章访问数:  143
  • HTML浏览量:  23
  • PDF量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-20
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回