留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

发散冷却系统冷却能力的数值分析

周子鹤 苏浩 贺菲 王建华

周子鹤, 苏浩, 贺菲, 王建华. 发散冷却系统冷却能力的数值分析[J]. 航空动力学报, 2021, 36(11): 2363-2371. doi: 10.13224/j.cnki.jasp.20200544
引用本文: 周子鹤, 苏浩, 贺菲, 王建华. 发散冷却系统冷却能力的数值分析[J]. 航空动力学报, 2021, 36(11): 2363-2371. doi: 10.13224/j.cnki.jasp.20200544
ZHOU Zihe, SU Hao, HE Fei, WANG Jianhua. Numerical analysis on cooling capacity of transpiration cooling system[J]. Journal of Aerospace Power, 2021, 36(11): 2363-2371. doi: 10.13224/j.cnki.jasp.20200544
Citation: ZHOU Zihe, SU Hao, HE Fei, WANG Jianhua. Numerical analysis on cooling capacity of transpiration cooling system[J]. Journal of Aerospace Power, 2021, 36(11): 2363-2371. doi: 10.13224/j.cnki.jasp.20200544

发散冷却系统冷却能力的数值分析

doi: 10.13224/j.cnki.jasp.20200544
基金项目: 国家自然科学基金(51806206)
详细信息
    作者简介:

    周子鹤(1996-),男,硕士生,主要从事发散冷却方面的研究。

    通讯作者:

    贺菲(1987-),女,副研究员,博士,主要从事发散冷却方面的研究。E-mail:hefeihe@ustc.edu.cn

  • 中图分类号: V231.1

Numerical analysis on cooling capacity of transpiration cooling system

  • 摘要: 以给定冷却工质质量流速下系统所能承受的最大热流表征冷却能力,对影响发散冷却系统冷却能力的主要因素进行了数值研究。理论分析和数值计算结果表明:发散冷却的冷却能力受冷却工质的吸热能力和冷却工质与固体骨架之间的换热能力共同制约。在小冷却工质质量流速下,发散冷却系统的冷却能力主要取决于冷却工质吸热能力,而随着冷却工质质量流速的增加,流固换热能力则逐渐成为决定冷却能力的主要因素,进而导致固体热导率和冷却工质比热容对发散冷却系统冷却能力的影响在不同冷却工质质量流速下存在显著差异。

     

  • [1] KARIMI M S,OBOODI M J.Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows[J].Heat and Mass Transfer/Waerme-Und Stoffuebertragung,2019,55(2):547-569.
    [2] JIANG Yuguang,QIN Jiang,CHETEHOUNA K,et al.Effect of geometry parameters on the hydrocarbon fuel flow rate distribution in pyrolysis zone of SC ramjet cooling channels[J].International Journal of Heat and Mass Transfer,2019,141(6):1114-1130.
    [3] ZHU Yinhai,PENG Wei,XU Ruina,et al.Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J].Chinese Journal of Aeronautics,2018,31(10):1929-1953.
    [4] SHEN Binxian,YIN Liang,LIU Hongpeng,et al.Thermal protection characteristics for a combinational opposing jet and platelet transpiration cooling nose-tip[J].Acta Astronautica,2019,155:143-152.
    [5] XIAO Xuefeng,ZHAO Guangbo,ZHOU Weixing,et al.Large-eddy simulation of transpiration cooling in turbulent channel with porous wall[J].Applied Thermal Engineering,2018,145:618-629.
    [6] LEONTIEV A,SAVELIEV A,KICHATOV B,et al.Effect of gaseous coolant temperature on the transpiration cooling for porous wall in the supersonic flow[J].International Journal of Heat and Mass Transfer,2019,142:118433.1-118433.9.
    [7] YANG Li,MIN Zheng,YUE Tianwei,et al.High resolution cooling effectiveness reconstruction of transpiration cooling using convolution modeling method[J].International Journal of Heat and Mass Transfer,2019,133:1134-1144.
    [8] SU Hao,WANG Jianhua,HE Fei,et al.Numerical investigation on transpiration cooling with coolant phase change under hypersonic conditions[J].International Journal of Heat and Mass Transfer,2019,129:480-490.
    [9] JIANG Peixue,LIAO Zhiyuan,HUANG Zheng,et al.Influence of shock waves on supersonic transpiration cooling[J].International Journal of Heat and Mass Transfer,2019,129:965-974.
    [10] LANGENER T,JVON WOLFERSDORF,SELZER M,et al.Experimental investigations of transpiration cooling applied to C/C material[J].International Journal of Thermal Sciences,2012,54:70-81.
    [11] YANG Li,CHEN Wei,CHYU M K.A convolution modeling method for pore plugging impact on transpiration cooling configurations perforated by straight holes[J].International Journal of Heat and Mass Transfer,2018,126:1057-1066.
    [12] HUANG Gan,MIN Zheng,YANG Li,et al.Transpiration cooling for additive manufactured porous plates with partition walls[J].International Journal of Heat and Mass Transfer,2018,124:1076-1087.
    [13] HUANG Gan,ZHU Yinhai,LIAO Zhiyuan,et al.Transpiration cooling with bio-inspired structured surfaces[J].Bioinspiration and Biomimetics,2020,15(3):036016.1-036016.21.
    [14] LIU Yuanqing,JIANG Peixue,XIONG Yanbin,et al.Experimental and numerical investigation of transpiration cooling for sintered porous flat plates[J].Applied Thermal Engineering,2013,50(1):997-1007.
    [15] OTSU H,FUJITA K,ITO T.Application of the transpiration cooling method for reentry vehicles[C].Reno,Nevada,US:the 45th AIAA Aerospace Sciences Meeting,2007.
    [16] ARAI M,SUIDZU T.Porous ceramic coating for transpiration cooling of gas turbine blade[J].Journal of Thermal Spray Technology,2013,22(5):690-698.
    [17] LIU Yuanqing,JIANG Peixue,JIN Shaoshan,et al.Transpiration cooling of a nose cone by various foreign gases[J].International Journal of Heat and Mass Transfer,2010,53(23/24):5364-5372.
    [18] KUHN M,HALD H.Application of transpiration cooling for hot structures[C]∥RESPACE-Key Technologies for Reusable Space Systems.Berlin Heidelberg:Springer,2008:82-103.
    [19] HUANG Zheng,ZHU Yinhai,XIONG Yanbin,et al.Investigation of transpiration cooling for sintered metal porous struts in supersonic flow[J].Applied Thermal Engineering,2014,70(1):240-249.
    [20] CHEURET F,STEELANT J,LANGENER T.Numerical investigations on transpiration cooling for scramjet applications using different coolants[R].San Francisco,US:the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,2011.
    [21] BURKE S P,PLUMMER W B. Gas flow through packed columns[J].Industrial and Engineering Chemistry,1928,20(11):1196-1200.
    [22] LIU Yuanqing,XIONG Yanbin,JIANG Peixue,et al.Effects of local geometry and boundary condition variations on transpiration cooling[J].International Journal of Heat and Mass Transfer,2013,62(1):362-372.
  • 加载中
计量
  • 文章访问数:  104
  • HTML浏览量:  1
  • PDF量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 刊出日期:  2021-11-28

目录

    /

    返回文章
    返回