留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IPDG方法的超声速混合层流动数值模拟

王贤 刘伟 赵明 刘正先

王贤, 刘伟, 赵明, 刘正先. 基于IPDG方法的超声速混合层流动数值模拟[J]. 航空动力学报, 2021, 36(2): 275-283. doi: 10.13224/j.cnki.jasp.2021.02.006
引用本文: 王贤, 刘伟, 赵明, 刘正先. 基于IPDG方法的超声速混合层流动数值模拟[J]. 航空动力学报, 2021, 36(2): 275-283. doi: 10.13224/j.cnki.jasp.2021.02.006
WANG Xian, LIU Wei, ZHAO Ming, LIU Zhengxian. Numerical simulations of supersonic mixing layers with IPDG method[J]. Journal of Aerospace Power, 2021, 36(2): 275-283. doi: 10.13224/j.cnki.jasp.2021.02.006
Citation: WANG Xian, LIU Wei, ZHAO Ming, LIU Zhengxian. Numerical simulations of supersonic mixing layers with IPDG method[J]. Journal of Aerospace Power, 2021, 36(2): 275-283. doi: 10.13224/j.cnki.jasp.2021.02.006

基于IPDG方法的超声速混合层流动数值模拟

doi: 10.13224/j.cnki.jasp.2021.02.006

Numerical simulations of supersonic mixing layers with IPDG method

  • 摘要: 为了满足超声速混合层高精度模拟需求,实现了基于内罚方法的间断伽辽金(IPDG)方法数值模拟。通过将黏性通量作为辅助变量使得Navier-Stokes方程降阶,并利用间断伽辽金方法进行空间离散,最后采用Newton-Krylov隐式方法对空间半离散方程进行时间推进。相对于有限体积法数值精度提高到了3阶。将该方法应用于对流马赫数为0.2的二维平面超声速混合层的数值模拟中,通过与实验数据的对比验证了方法的可靠性。数值结果显示了混合层中层流到湍流的发展过程。在此基础上,将基于数值解误差分布的自适应网格技术与IPDG方法结合起来,对比发现自适应网格数量减少了9倍,计算时间减少了8倍,大幅提高了方法的计算效率。

     

  • [1] BOGDANOFF D W.Compressibility effects in turbulent shear layers[J].AIAA Journal,1983,21(6):926-927.
    [2] PAPAMOSCHOU D,ROSHKO A.The compressible turbulent shear layer:an experimental study[J].Journal of Fluid Mechanics,1988,197:453-457.
    [3] SANDHAM N D,REYNOLDS W C.Three-dimensional simulations of large eddies in the compressible mixing layer[J].Journal of Fluid Mechanics,1991,224:133-158.
    [4] MORRIS P J,GIRIDHARAN M G,LILLEY G M.On the turbulent mixing of compressible free shear layers[J].Proceedings of the Royal Society:A Mathematical,Physical and Engineering Sciences,1990,431(1882):219-243.
    [5] RAGAB S A,WU J L.Linear instabilities in two-dimensional compressible mixing layers[J].Physics of Fluids:A Fluid Dynamics,1989,1(6):957-966.
    [6] JACKSON T L,GROSCH C E.Absolute/convective instabilities and the convective Mach number in a compressible mixing layer[J].Physics of Fluids:A Fluid Dynamics,1990,2(6):949-954.
    [7] GOEBEL S G,DUTTON J C,KRIER H,et al.Mean and turbulent velocity measurements of supersonic mixing layers[J].Mineralium Deposita,1994,29(5):263-272.
    [8] CHAKRABORTY D,MUKUNDA H S,PAUL P J.Two dimensional direct numerical simulation of nonreacting confined supersonic mixing layer[J].Aeronautical Journal,2000,104(1036):291-296.
    [9] LUI C,LELE S.Direct numerical simulation of spatially developing,compressible,turbulent mixing layers[R].Reno,US:Aerospace Sciences Meeting and Exhibit,2001.
    [10] LI Qibing,CHEN Haixin,FU Song.Large-scale vortices in high-speed mixing layers[J].Physics of Fluids,2003,15(10):3240-3243.
    [11] SHI Xiaotian,CHEN Jun,BI Weitao,et al.Numerical simulations of compressible mixing layers with a discontinuous Galerkin method[J].Acta Mechanica Sinica,2011,27(3):12-23.
    [12] 吕宏强,张涛,孙强,等.间断伽辽金方法在可压缩流数值模拟中的应用研究综述[J].空气动力学学报,2017,35(4):455-471. Lv Hongqiang,ZHANG Tao,SUN Qiang,et al.Applications of discontinuous Galerkin method in numerical simulations of compressible flows:a review[J].Acta Aerodynamica Sinica,2017,35(4):455-471.(in Chinese)
    [13] BASSI F,REBAY S.A high order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J].Journal of Computational Physics,1997,131(2):267-279.
    [14] COCKBURN B,SHU Chiwang.The local discontinuous Galerkin method for time-dependent convection-diffusion systems[J].SIAM Journal on Numerical Analysis,1998,35(6):2440-2463.
    [15] HARTMANN R,HOUSTON P.Symmetric interior penalty DG methods for the compressible Navier-Stokes equations Ⅰ:method formulation[J].International Journal of Numerical Analysis and Modeling,2006,3(1):1-20.
    [16] HARTMANN R,HOUSTON P.Symmetric interior penalty DG methods for the compressible Navier-Stokes equations Ⅱ:goal-oriented a posteriori error estimation[J].International Journal of Numerical Analysis and Modeling,2006,3(1):141-162.
    [17] WHEELER M F,FANETT M.An elliptic collocation-finite element method with interior penalties[J].SIAM Journal on Numerical Analysis,1978,15(1):152-161.
    [18] BATRICE R,GIRAULT V.Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces[J].Computer Methods in Applied Mechanics and Engineering,2006,195(25/26/27/28):3274-3292.
    [19] WANG L,ANDERSON W K,ERWIN J T,et al.Discontinuous Galerkin and Petrov Galerkin methods for compressible viscous flows[J].Computers and Fluids,2014,100:13-29.
    [20] DE WIART C C,HILLEWAERT K,BRICTEUX L,et al.Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method[J].International Journal for Numerical Methods in Fluids,2015,78(6):335-354.
    [21] ARNOLD D N,BREZZI F,MARINI D.Unified analysis of discontinuous Galerkin methods for elliptic problems[J].SIAM Journal on Numerical Analysis,2002,39(5):1749-1779.
    [22] VAN LEER B,LO M,VAN RAALTE MARC.A discontinuous Galerkin method for diffusion based on recovery[R].AIAA 2007-4083,2007.
    [23] MICHAEL D,DINSHAW S B,ELEUTERIO F T,et al.A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes[J].Journal of Computational Physics,2008,227(18):8209-8253.
    [24] LUO Hong,XIA Yidong,FRISBEY M.A reconstructed discontinuous Galerkin method based on a hierarchical WENO reconstruction for computing shock waves on hybrid grids[R].AIAA-2013-3063,2013.
    [25] HARTMANN R.Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations[J].International Journal for Numerical Methods in Fluids,2006,51(9/10):1131-1156.
    [26] 林国华,傅德薰,马延文.空间发展混合流的大涡模拟[J].空气动力学学报,2001,19(3):325-330. LIN Guohua,FU Dexun,MA Yanwen.Large-eddy simulation of a spatially developing mixing layer[J].Acta Aerodynamica Sinica,2001,19(3):325-330.(in Chinese)
    [27] ARORA K,CHAKRAVARTHY K,CHAKRABORTY D.Large eddy simulation of supersonic,compressible,turbulent mixing layers[J].Aerospace Science and Technology,2019,86(3):592-598.
    [28] 陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2002.
  • 加载中
计量
  • 文章访问数:  145
  • HTML浏览量:  5
  • PDF量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回