留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褶皱位置对蜻蜓滑翔翼气动性能的影响

许娜 周帅至 牟晓蕾

许娜, 周帅至, 牟晓蕾. 褶皱位置对蜻蜓滑翔翼气动性能的影响[J]. 航空动力学报, 2021, 36(7): 1434-1442. doi: 10.13224/j.cnki.jasp.20210039
引用本文: 许娜, 周帅至, 牟晓蕾. 褶皱位置对蜻蜓滑翔翼气动性能的影响[J]. 航空动力学报, 2021, 36(7): 1434-1442. doi: 10.13224/j.cnki.jasp.20210039
XU Na, ZHOU Shuaizhi, MOU Xiaolei. Influence of corrugation position on aerodynamic performance of dragonfly gliding airfoils[J]. Journal of Aerospace Power, 2021, 36(7): 1434-1442. doi: 10.13224/j.cnki.jasp.20210039
Citation: XU Na, ZHOU Shuaizhi, MOU Xiaolei. Influence of corrugation position on aerodynamic performance of dragonfly gliding airfoils[J]. Journal of Aerospace Power, 2021, 36(7): 1434-1442. doi: 10.13224/j.cnki.jasp.20210039

褶皱位置对蜻蜓滑翔翼气动性能的影响

doi: 10.13224/j.cnki.jasp.20210039
基金项目: 

国家自然科学基金(11802262,11502228);烟台大学研究生科技创新基金(YDYB2129)

详细信息
    作者简介:

    许娜(1986-),女,讲师,博士,主要从事仿生流体力学研究。

    通讯作者:

    牟晓蕾(1984-),男,副教授,博士,主要从事仿生流体力学研究。E-mail:xiaoleimou@126.com

  • 中图分类号: V221.3

Influence of corrugation position on aerodynamic performance of dragonfly gliding airfoils

  • 摘要: 改变昆虫翅膀的褶皱结构可以优化翼型的气动性能,有利于微型飞行器的气动设计。以蜻蜓翼作为参考,采用计算流体力学(CFD)的方法计算了攻角范围为0°~20°,雷诺数范围为700~2300时褶皱位于前缘、尾缘和中部位置时三种翼型的滑翔气动性能。结果表明:在不同攻角和雷诺数下,褶皱位于尾缘的翼型具有最大的升力系数和升阻比,滑翔气动性能最优;当雷诺数为1500,攻角为10°时,褶皱位于尾缘的翼型时均升力系数分别比位于前缘和中部的翼型提高了58%和82%,升阻比分别提高了49%和33%;这是由于尾缘褶皱中的涡起到了延缓前缘涡脱落的作用,使前缘涡更为集中,更贴近壁面。

     

  • [1] MORMAN J J.Literature review of the aerodynamics of flapping flight in micro air vehicle applications[D].Fargo,US:North Dakota State University,2014.
    [2] HORD K,LIAN Yongsheng.Numerical investigation of the aerodynamic and structural characteristics of a corrugated airfoil[J].Journal of Aircraft,2012,49(3):749-757.
    [3] GAD-EL-HAK M.Micro-air-vehicles:can they be controlled better?[J].Journal of Aircraft,2001,38(3):419-429.
    [4] 刘强,刘强,白鹏,等.不同雷诺数下翼型气动特性及层流分离现象演化[J].航空学报,2017,38(4):27-39. LIU Qiang,LIU Qiang,BAI Peng,et al.Aerodynamic characteristics of airfoil and evolution of laminar separation at different Reynolds numbers[J].Acta Aeronautica et Astronautica Sinica,2017,38(4):27-39.(in Chinese)
    [5] VARGAS A,MITTAL R,DONG Haibo.A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight[J].Bioinspiration and Biomimetics,2008,3(2):026004.1-026004.13.
    [6] EL-LATIEF M E A,ELSAYED K,ABDELRAHMAN M M.Aerodynamic study of the corrugated airfoil at ultra-low Reynolds number[J].Advances in Mechanical Engineering,2019,11(10):1-18.
    [7] REES C J C.Aerodynamic properties of an insect wing section and a smooth aerofoil compared[J].Nature,1975,258(5531):141-142.
    [8] KESEL A B,PHILIPPI U,NACHTIGALL W.Biomechanical aspects of the insect wing:an analysis using the finite element method[J].Computers in Biology and Medicine,1998,28(4):423-437.
    [9] REN Huaihui,WANG Xishu,CHEN Yinglong,et al.Biomechanical behaviors of dragonfly wing:relationship between configuration and deformation[J].Chinese Physics B,2012,21(3):294-303.
    [10] KESEL A B.Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils[J].Journal of Experimental Biology,2000,203(20):3125-3135.
    [11] VARGAS A,MITTAL R.Aerodynamic performance of biological airfoils[R].AIAA-2004-2319,2004.
    [12] MURPHY J,HU Hui.An experimental investigation on a bio-inspired corrugated airfoil[R].AIAA-2009-1087,2009.
    [13] ZHANG Zilong,YIN Yajun,ZHONG Zheng,et al.Aerodynamic performance of dragonfly wing with well-designed corrugated section in gliding flight[J].Computer Modeling in Engineering and Sciences,2015,109(3):285-302.
    [14] SHI Xing,HUANG Xianwen,ZHENG Yao,et al.Effects of cambers on gliding and hovering performance of corrugated dragonfly airfoils[J].International Journal of Numerical Methods for Heat and Fluid Flow,2016,26(3/4):1092-1120.
    [15] WANG Xishu,ZHANG Zhihao,REN Huaihui,et al.Role of soft matter in the sandwich vein of dragonfly wing in its configuration and aerodynamic behaviors[J].Journal of Bionic Engineering,2017,14(3):557-566.
    [16] XUAN Haibin,HU Jun,YU Yong,et al.Aerodynamic effects of bio-inspired corrugated wings on gliding and hovering performances[J].Journal of Mechanical Engineering Science,2020,235(2):319-329.
    [17] KIM W K,KO J H,PARK H C,et al.Effects of corrugation of the dragonfly wing on gliding performance[J].Journal of Theoretical Biology,2009,260(4):523-530.
    [18] 张锐,周超英.昆虫级褶皱翼型的滑翔气动特性[J].航空动力学报,2014,29(3):652-656. ZHANG Rui,ZHOU Chaoying.Gliding aerodynamic characteristics of insect-size corrugated airfoils[J].Journal of Aerospace Power,2014,29(3):652-656.(in Chinese)
    [19] ANSARI M I,SIDDIQUE M H,SAMAD A,et al.On the optimal morphology and performance of a modeled dragonfly airfoil in gliding mode[J].Physics of Fluids,2019,31(5):051904.1-051904.23.
    [20] CHANDRA S.Low Reynolds number flow over low aspect ratio corrugated wing[J].International Journal of Aeronautical and Space Sciences,2020,21(3):627-637.
    [21] MENG Xueguang,SUN Mao.Aerodynamic effects of wing corrugation at gliding flight at low Reynolds numbers[J].Physics of Fluids,2013,25(7):071905.1-071905.15.
    [22] REES C J C.Form and function in corrugated insect wings[J].Nature,1975,256(5514):200-203.
    [23] WAKELING J M,ELLINGTON C P.Dragonfly flight:Ⅰ gliding flight and steady-state aerodynamic forces[J].The Journal of Experimental Biology,1997,200(3):543-556.
    [24] 孙茂.昆虫飞行的空气动力学[J].力学进展,2015,45(1):1-28. SUN Mao.Aerodynamics of insect flight[J].Advances in Mechanics,2015,45(1):1-28.(in Chinese)
  • 加载中
计量
  • 文章访问数:  106
  • HTML浏览量:  2
  • PDF量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 刊出日期:  2021-07-28

目录

    /

    返回文章
    返回