留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

选区激光熔化TC4小裂纹扩展特性数值模拟

徐宇飞 胡殿印 米栋 潘锦超 王荣桥

徐宇飞, 胡殿印, 米栋, 潘锦超, 王荣桥. 选区激光熔化TC4小裂纹扩展特性数值模拟[J]. 航空动力学报, 2021, 36(12): 2515-2523. doi: 10.13224/j.cnki.jasp.20210043
引用本文: 徐宇飞, 胡殿印, 米栋, 潘锦超, 王荣桥. 选区激光熔化TC4小裂纹扩展特性数值模拟[J]. 航空动力学报, 2021, 36(12): 2515-2523. doi: 10.13224/j.cnki.jasp.20210043
XU Yufei, HU Dianyin, MI Dong, PAN Jinchao, WANG Rongqiao. Numerical simulation of small crack growth in selective laser melting TC4[J]. Journal of Aerospace Power, 2021, 36(12): 2515-2523. doi: 10.13224/j.cnki.jasp.20210043
Citation: XU Yufei, HU Dianyin, MI Dong, PAN Jinchao, WANG Rongqiao. Numerical simulation of small crack growth in selective laser melting TC4[J]. Journal of Aerospace Power, 2021, 36(12): 2515-2523. doi: 10.13224/j.cnki.jasp.20210043

选区激光熔化TC4小裂纹扩展特性数值模拟

doi: 10.13224/j.cnki.jasp.20210043
基金项目: 国家自然科学基金(52022007); 国家科技重大专项(2017-Ⅳ-0004-0041)
详细信息
    作者简介:

    徐宇飞(1999-),女,硕士生,主要从事增材制造材料小裂纹扩展研究。

    通讯作者:

    胡殿印(1980-),女,教授,博士,研究领域为发动机结构强度及疲劳可靠性。E-mail: hdy@buaa.edu.cn

  • 中图分类号: V252.2

Numerical simulation of small crack growth in selective laser melting TC4

  • 摘要: 发展了一种考虑微观组织的选区激光熔化(SLM)钛合金TC4小裂纹扩展数值模拟方法。基于SLM TC4的微观组织观测结果,利用Voronoi算法并通过晶体取向筛选,实现了微观组织建模。在此基础上,采用扩展有限元法建立了SLM TC4材料小裂纹扩展行为模拟方法,探究沉积方向以及晶粒尺寸、晶体取向等微观组织对小裂纹扩展速率的影响规律。结果表明:沉积方向影响材料的裂纹扩展抗力,沉积方向与裂纹扩展方向平行时,材料抵抗疲劳小裂纹扩展的性能相对更好。晶粒尺寸影响小裂纹扩展速率,晶粒尺寸越大,小裂纹扩展速率越快。晶体取向影响速率的波动性,不同晶体取向材料的小裂纹扩展速率上下界有明显差异。

     

  • [1] 朱知寿.新型航空高性能钛合金材料技术研究与发展[M].北京:航空工业出版社,2013.
    [2] 杨占尧.增材制造与3D打印技术及应用[M].北京:清华大学出版社,2017.
    [3] 巩水利,锁红波,李怀学.金属增材制造技术在航空领域的发展与应用[J].航空制造技术,2013,433(13):66-71.
    [4] 王桂荣,赵晴,许良.TC4-DT 钛合金小裂纹扩展行为研究[J].科技通报,2018,34(6):95-100.
    [5] KUMAR P,PRAKASH O,RAMAMURTY U.Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V[J].Acta Materialia,2018,154:246-260.
    [6] WANG Zhen,WU Wenwang,QIAN Guian,et al.In-situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated temperature[J].Engineering Fracture Mechanics,2019,214:149-163.
    [7] ZHUANG Zhao,JING Chen,HUA Tan,et al.In situ tailoring microstructure in laser solid formed titanium alloy for superior fatigue crack growth resistance[J].Scripta Materialia,2020,174:53-57.
    [8] WU Yanzeng,BAO Rui,ZHANG Shaoqin.In-situ measurement of near-tip fatigue crack displacement variation in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J].Procedia Structure Integrity,2018,13:890-895.
    [9] KUMAR P,RAMAMURTY U.Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted TI-6AL-4V alloy[J].Acta Materialia,2019,169:45-59.
    [10] QIAN Guian,JIAN Zhimo,PAN Xiangnan,et al.In-situ investigation on fatigue behaviors of Ti-6Al-4V manufac tured by selective laser melting[EB/OL].[2020-10-05].https:∥doi.org/10.1016/j.ijfatigue.2019.105424.
    [11] XU Kang,LI Baochuan,LI Simeng,et al.In-situ obser vation for the fatigue crack growth mechanism of 316L stainless steel fabricated by laser engineered net shaping[EB/OL].[2020-10-05]https:∥doi.org/10.1016/j.ijfatigue.2019.105272.
    [12] MICHAEL W,KEVIN W,RITWIK B,et al.Small fa tigue crack growth behavior of Ti-6Al-4V produced via selective laser melting:in situ characterization of a 3D crack tip interactions with defects[EB/OL].[2020-10-05].https:∥doi.org/10.1016/j.ijfatigue.2019.105424.
    [13] SIMONELLI M,TSE Y Y,TUCK C.Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J].Materials Science and Engineering A,2014,616:1-11.
    [14] 赵仁亮.基于voronoi图的空间关系计算研究[D].长沙:中南大学,2002.
    [15] 司良英.FCC金属冷加工织构演变的晶体塑性有限元模拟[D].沈阳:东北大学,2009.
    [16] 杨平.电子背散射衍射技术以及应用[M].北京:冶金工业出版社,2007.
    [17] LEUDERS S,THONE M,RIEMER A,et al.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting:fatigue resistance and crack growth performance[J].International Journal of Fatigue,2013,48:300-307.
    [18] 庄茁,柳占立,成斌斌,等.扩展有限单元法[M].北京:清华大学出版社,2012.
    [19] HU Dianyin,PAN Jinchao,MAO Jianxing,et al.An aniso tropic mesoscale model of fatigue failure in a titanium alloy containing duplex microstructure and hard α inclusions[EB/OL].[2020-10-06].https:∥doi.org/10.1016/j.matdes.2020.108844.
    [20] HBERGARE A,DORADO J I,MARTIN-MEIZOSO A,et al.Fatigue crack propagation in complex stress fields:experiments and numerical simulations using the extended finite element method (XFEM)[J].International Journal of Fatigue,2017,103:112-121.
    [21] 何龙龙,刘志芳,顾俊杰,等.基于XFEM的疲劳裂纹扩展路径和寿命预测[J].西北工业大学学报,2019,37(4):737-743.
  • 加载中
计量
  • 文章访问数:  95
  • HTML浏览量:  6
  • PDF量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回