Research status and development trend of condition monitoring on main-shaft bearings used in aircraft engines
-
摘要: 航空发动机主轴轴承承受着高温、高速、重载、贫油、断油等极端工况,其疲劳、磨损等失效问题严重影响发动机的可靠性。因此,对航空发动机主轴轴承的使用状态进行有效精确监测极为重要。对航空发动机主轴轴承工况特点、主要失效模式和失效机制进行了梳理;针对主轴轴承的状态监测方法和技术,总结并对比分析了现有主轴轴承振动、滑油状态、声音、声发射、温度等监测方法的优势与不足;讨论了基于多传感器信息融合的主轴轴承状态监测方法及技术特色。结果表明:主轴轴承的材料、结构特性等对传感器输出信号的影响,传感器结构的微型化、无线化,高效的多传感器信息融合与决策方法,以及物理模型与数字模型的数据交互将成为主轴轴承状态监测未来主要的研究方向。Abstract: The main-shaft bearings in aircraft engines generally endure extreme operational conditions,i.e.,high temperature,high speed,heavy load,poor oil and oil cut-off.Fatigue and wear among other failures in the main-shaft bearings significantly influence the reliability of the aircraft engines.Thus,it is essential to monitor the operational status effectively and precisely.The operating condition characteristics,main failure modes and failure mechanisms of the main-shaft bearings were sorted out.Existing main-shaft bearing monitoring technologies were summarized and compared in terms of vibration,lubricating status,sound,acoustic emission,and temperature.The method and technical characteristics of main-shaft bearings condition monitoring based on multi-sensor information fusion were discussed.Result showed that,the influences of the material and structural characteristics on output signals,the micro and wireless sensors,efficient multi-sensor information fusion methods,and data interaction between the physical and the digital model would become the future research direction of main-shaft bearings.
-
[1] VAKIS A I,YASTREBOV V A,SCHEIBERT J,et al.Modeling and simulation in tribology across scales:an overview[J].Tribology International,2018,125:169-199. [2] ZARETSKY E V,BRANZAI E V.Rolling bearing service life based on probable cause for removal:a tutorial[J].Tribology Transactions,2016,60(2):300-312. [3] DONZELLA G,PETROGALLI C.A failure assessment diagram for components subjected to rolling contact loading[J].International Journal of Fatigue,2010,32(2):256-268. [4] ZARETSKY E V.Rolling bearing steels-a technical and historical perspective[J].Materials Science and Technology,2012,28(1):58-69. [5] WAKIRU J M,PINTELON L,MUCHIRI P N,et al.A review on lubricant condition monitoring information analysis for maintenance decision support[J].Mechanical Systems and Signal Processing,2019,118:108-132. [6] MISHRA R K,MUDULI S K,SRINIVASAN K,et al.Failure analysis of an inter-shaft bearing of an aero gas turbine engine[J].Journal of Failure Analysis and Prevention,2015,15(2):205-210. [7] LEI Y,LIN J,HE Z,et al.A review on empirical mode decomposition in fault diagnosis of rotating machinery[J].Mechanical Systems and Signal Processing,2013,35(1/2):108-126. [8] TANDON N,CHOUDHURY A.A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J].Tribology International,1999,32(8):469-480. [9] SHIROISHI J,LI Y,LIANG S,et al.Bearing condition diagnostics via vibration and acoustic emission measurements[J].Mechanical Systems and Signal Processing,1997,11(5):693-705. [10] 郝如江,卢文秀,褚福磊.声发射检测技术用于滚动轴承故障诊断的研究综述[J].振动与冲击,2008,27(3):75-79. [11] FLANAGAN I,JORDAN J,WHITTINGTON H.Wear-debris detection and analysis techniques for lubricant-based condition monitoring[J].Journal of Physics:E Scientific Instruments,1988,21(11):1011-1016. [12] WANG S Y,YANG D X,HU H F.Evaluation for bearing wear states based on online oil multi-parameters monitoring[J].Sensors,2018,18(4):1111.1-1111.22. [13] EBNER M,ZIEGLTRUM A,LOHNER T,et al.Measurement of EHL temperature by thin film sensors:thermal insulation effects[J].Tribology International,2020,149:105515. [14] HENAO-SEPULVEDA J A,TOLEDO-QUINONES M,JIA Y.Contactless monitoring of ball bearing temperature[R].Ottawa,Canada:the Instrumentation and Measurement Technology Conference,2005. [15] WANG L,LI Y.Boundary for aviation bearing accelerated life test based on quasi-dynamic analysis [J].Tribology International,2017,116:414-421. [16] 叶振环.航空发动机高速滚动轴承动力学行为研究[D].哈尔滨; 哈尔滨工业大学,2013. [17] 李云峰.航空发动机主轴轴承寿命等效加速试验方法研究[D].哈尔滨; 哈尔滨工业大学,2018. [18] 王洪伟.航空发动机滚动轴承故障诊断与预测关键技术研究[D].南京; 南京航空航天大学,2015. [19] IOANNIDES E,HARRIS T A.A new fatigue life model for rolling bearings[J].Journal of Tribology,1985:107:367-377. [20] HARRIS T A,KOTZALAS M N.Rolling bearing analysis:advanced concepts of bearing technology[M].Los Angeles,US:CRC (Chemical Rubber Company) Press,2007. [21] 陈果,贺志远,尉询楷,等.基于整机的中介轴承外圈剥落故障振动分析[J].航空动力学报,2020,35(3):658-672. [22] TALLIAN T E.Failure atlas for Hertz contact machine elements[M].New York,US:American Society of Mechanical Engineers,1999. [23] ARCHARD J F.Contact and rubbing of flat surfaces[J].Journal of Applied Physics,1953,24(8):981-988. [24] GLOECKNER P,EBERT F J.Micro-sliding in high-speed aircraft engine ball bearings[J].Tribology Transactions,2010,53(3):369-375. [25] AHMAD M A,KASOLANG S,DWYER-JOYCE R S.Experimental study on the effects of oil groove location on temperature and pressure profiles in journal bearing lubrication[J].Tribology International,2014,74:79-86. [26] 陈观慈,王黎钦,古乐,等.高速球轴承的生热分析[J].航空动力学报,2007,22(1):163-168. [27] WANG C,ZHANG C,GU L,et al.Analysis on surface damage of M50 steel at impact-sliding contacts[J].Tribology International,2020,150:106384.1-106384.8. [28] 崔立,王黎钦,郑德志,等.高速球轴承打滑的临界负荷研究[J].航空动力学报,2007,22(11):1971-1976. [29] 李军宁,陈渭,吕少璞,等.高速滚动轴承滑蹭试验系统研制[J].摩擦学学报,2012,32(3):221-226. [30] 刘延斌,张占立,刘红彬.斜面兜孔圆柱滚子轴承的高速防打滑特性[J].航空动力学报,2020,35(1):162-168. [31] 刘鲁,霍帅,郑凯,等.高DN值滚子轴承保持架断裂分析[J].航空动力学报,2020,35(10):2115-2122. [32] TAKABI J,KHONSARI M M.On the thermally-induced failure of rolling element bearings[J].Tribology International,2016,94:661-674. [33] 张涛,陈晓阳,顾家铭,等.高速角接触球轴承保持架稳定性研究进展[J].航空学报,2018,39(7):022026.1-022026.13. [34] 田晶,周杰,王术光,等.基于自适应双稳态随机共振的中介轴承故障诊断方法[J].航空动力学报,2019,34(10):2237-2245. [35] 陈果,郝腾飞,程小勇,等.基于机匣测点信号的航空发动机滚动轴承故障诊断灵敏性分析[J].航空动力学报,2014,29(12):2874-2884. [36] 张向阳,陈果,郝腾飞,等.基于机匣信号的滚动轴承故障卷积神经网络诊断方法[J].航空动力学报,2019,34(12):2729-2737. [37] RANDALL R B,ANTONI J.Rolling element bearing diagnostics:a tutorial[J].Mechanical Systems and Signal Processing,2011,25(2):485-520. [38] LU Y,TANG J.On time-frequency domain feature extraction of wave signals for structural health monitoring[J].Measurement,2018,114:51-59. [39] ANTONI J.Cyclic spectral analysis in practice[J].Mechanical Systems and Signal Processing,2007,21(2):597-630. [40] WANG Y,XIANG J,MARKERT R,et al.Spectral kurtosis for fault detection,diagnosis and prognostics of rotating machines:a review with applications[J].Mechanical Systems and Signal Processing,2016,66/67:679-698. [41] SUN H,HE Z,ZI Y,et al.Multiwavelet transform and its applications in mechanical fault diagnosis:a review[J].Mechanical Systems and Signal Processing,2014,43(1/2):1-24. [42] LU S,HE Q,WANG J.A review of stochastic resonance in rotating machine fault detection[J].Mechanical Systems and Signal Processing,2019,116:230-260. [43] ZHANG H,CHEN X,ZHANG X,et al.Aero-engine bearing fault detection:a clustering low-rank approach[J].Mechanical Systems and Signal Processing,2020,138:106529.1-106539.27. [44] WANG B,ZHANG X,SUN C,et al.A Quantitative intelligent diagnosis method for early weak faults of aviation high-speed bearings[J].ISA(International Society of Automation) Transactions,2019,93:370-383. [45] 廖明夫,马振国,刘永泉,等.航空发动机中介轴承的故障特征与诊断方法[J].航空动力学报,2013,28(12):2752-2758. [46] 王雅红,夏新涛,王中宇.基于乏信息系统的本征融合技术[J].航空动力学报,2008,23(8):1432-1437. [47] SUN J,WOOD R J K,WANG L,et al.Wear monitoring of bearing steel using electrostatic and acoustic emission techniques[J].Wear,2005,259(7/8/9/10/11/12):1482-1489. [48] LIU C,WU X,MAO J,et al.Acoustic emission signal processing for rolling bearing running state assessment using compressive sensing[J].Mechanical Systems and Signal Processing,2017,91:395-406. [49] LI H,WU Z,XUE K,et al.Research on aero-engine bearing fault using acoustic emission technique based on wavelet packet decomposition and support vector machine[C]∥ Proceedings of the IEEE 2nd Advanced Information Technology,Electronic and Automation Control Conference(IAEAC) .Chongqing:IEEE,2017:1444-1448.[50] LI S,MASSE D.On the flash temperature under the starved lubrication condition of a line contact[J].Tribology International,2019,136:173-181. [51] MA J,RUAN S,HU J,et al.The intrinsic relationship between color variation and performances of the deteriorated aviation lubrication oil[J].Journal of Industrial and Engineering Chemistry,2020,92:88-95. [52] NG E P,MINTOVA S.Quantitative moisture measurements in lubricating oils by FTIR spectroscopy combined with solvent extraction approach[J].Microchemical Journal,2011,98(2):177-185. [53] YU X,MENG Y,TIAN Y,et al.Measurement of lubricant viscosity and detection of boundary slip at high shear rates[J].Tribology International,2016,94:20-25. [54] XU G,ZHAO Y,LI M,et al.Effects of the lubricating oil and diesel mixture combustion on the oxidation and microphysical properties of particulate matter[J].Energy Reports,2020,6:308-314. [55] BISWAS R K,MAJUMDAR S K,BASU S K.Vibration and oil analysis by ferrography for condition monitoring[J].Journal of The Institution of Engineers(India),2013,94(3):267-274. [56] 朱新河,严新平,范世东.一种新的铁谱磨损监测定量参数[J].摩擦学学报,1996,16(1):70-74. [57] MURALI S,XIA X,JAGTIANI A V,et al.Capacitive Coulter counting:detection of metal wear particles in lubricant using a microfluidic device[J].Smart Materials and Structures,2009,18(3):037001.1-037001.6. [58] 刘洪涛,葛世荣.磨屑轮廓的雷达图分形表征[J].科学通报,2007,52(13):1586-1590. [59] 王洪伟,陈果,陈立波,等.一种航空发动机滚动轴承磨损故障监测技术[J].航空动力学报,2014,29(9):2256-2263. [60] HONG W,CAI W,WANG S,et al.Mechanical wear debris feature,detection,and diagnosis:A review[J].Chinese Journal of Aeronautics,2018,31(5):867-882. [61] ZHU X,ZHONG C,ZHE J.Lubricating oil conditioning sensors for online machine health monitoring:a review[J].Tribology International,2017,109:473-484. [62] 庞政铎.重载刮板输送机减速器油液在线污染传感报警系统的研究[D].北京; 中国矿业大学,2011. [63] 刘学工.基于油液监测技术的重型车辆故障诊断研究[D].长春; 长春理工大学,2013. [64] MILLER J L,KITALJEVICH D.In-line oil debris monitor for aircraft engine condition assessment[C]∥ Proceedings of IEEE Aerospace Conference .Big Sky,MT,US:IEEE,2000:49-56.[65] MUIR D,HOWE B.In-line oil debris monitor (ODM) for the advanced tactical fighter engine[R].SAE(Society of Automotive Engineers) Technical Paper 961308,1996. [66] HIGGINS P D,CROW J T.Advances in commercial engine lube debris monitoring[R].SAE(Society of Automotive Engineers) Technical Paper 972603,1997. [67] POWRIE H E G,FISHER C E.Engine health monitoring:towards total prognostics[C]∥ Proceedings of IEEE Aerospace Conference .Snowmass,CO,US:IEEE,1999:11-20.[68] POWRIE H.Use of electrostatic technology for aero engine oil system monitoring[C]∥ Proceedings of IEEE Aerospace Conference .Big Sky,MT,US:IEEE,2002:57-71.[69] POWRIE H,WOOD R,HARVEY T,et al.Electrostatic charge generation associated with machinery component deterioration[C]∥ Proceedings of IEEE Aerospace Conference .Big Sky,MT,US:IEEE,2002:2927-2394.[70] 张兴明.时谐磁场金属颗粒磁化特性及微流体油液检测机理研究[D].辽宁 大连:大连海事大学,2014. [71] SUN J,WANG L,LI J,et al.Online oil debris monitoring of rotating machinery:a detailed review of more than three decades[J].Mechanical Systems and Signal Processing,2021,149:107341.1-107341.30. [72] RAPOSO J L,OLIVEIRA S R,NETO J A G,et al.Determination of silicon in lubricant oil by high-resolution continuum source flame atomic absorption spectrometry using least-square background correction and internal standardization[J].Analytical Letters,2011,44(12):2150-2161. [73] 郑国经,计子华,余兴.原子发射光谱分析技术及应用[M].北京:化学工业出版社,2010. [74] HAMILTON A,CLEARY A,QUAIL F.Development of a novel wear detection system for wind turbine gearboxes[J].IEEE(Institute of Electrical and Electronics Engineers) Sensors Journal,2014,14(2):465-473. [75] DU L,ZHE J,CARLETTA J E,et al.Inductive Coulter counting:detection and differentiation of metal wear particles in lubricant[J].Smart Materials and Structures,2010,19(5):057001.1-057001.7. [76] SEOUDI T,PHILIPPON D,FILLOT N,et al.CdSe-based quantum dots as in situ pressure and temperature non-intrusive sensors in elastohydrodynamic contacts[J].Tribology Letters,2020,68(73):1-14. [77] DUAN Z,WU T,GUO S,et al.Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings:a review[J].The International Journal of Advanced Manufacturing Technology,2018,96(1/2/3/4):803-819. [78] 林桐,陈果,张全德,等.航空滚动轴承振动特征的故障灵敏度分析与融合技术[J].航空动力学报,2017,32(9):2205-2218. [79] SUN S L,DENG Z L.Multi-sensor optimal information fusion Kalman filter[J].Automatica,2004,40(6):1017-1023. [80] FAN X,ZUO M J.Fault diagnosis of machines based on D-S evidence theory:Part 1 D-S evidence theory and its improvement[J].Pattern Recognition Letters,2006,27(5):366-376. [81] FAN X,ZUO M J.Fault diagnosis of machines based on D-S evidence theory:Part 2 application of the improved D-S evidence theory in gearbox fault diagnosis[J].Pattern Recognition Letters,2006,27(5):377-385. [82] 翟翌立,戴逸松.多传感器数据自适应加权融合估计算法的研究[J].计量学报,1998,19(1):69-75. [83] DEMPSTER A P.Upper and lower probabilities induced by a multivalued mapping[J].Annals of Mathematical Stats,1967,38(2):325-339. [84] SHAFER G.Perspectives on the theory and practice of belief functions[J].International Journal of Approximate Reasoning,1990,4(5/6):323-362. [85] 严新平,谢友柏,萧汉梁.摩擦学故障种类诊断的D-S信息融合研究[J].摩擦学学报,1999,19(2):145-150. [86] LIN T,CHEN G,OUYANG W,et al.Hyper-spherical distance discrimination:a novel data description method for aero-engine rolling bearing fault detection[J].Mechanical Systems and Signal Processing,2018,109:330-351. [87] CHEN Z,MAURICIO A,LI W,et al.A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks[J].Mechanical Systems and Signal Processing,2020,140:1066683.1-1066683.16. [88] LEI Y,YANG B,JIANG X,et al.Applications of machine learning to machine fault diagnosis:A review and roadmap[J].Mechanical Systems and Signal Processing,2020,138:106587.1-106587.39. [89] LIU X,MA L,MATHEW J.Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques[J].Mechanical Systems and Signal Processing,2009,23(3):690-700. [90] GUO H Y,LI Z L.A two-stage method to identify structural damage sites and extents by using evidence theory and micro-search genetic algorithm[J].Mechanical Systems and Signal Processing,2009,23(3):769-782. [91] REBELLO S,YU H,MA L.An integrated approach for system functional reliability assessment using dynamic bayesian network and hidden markov model[J].Reliability Engineering and System Safety,2018,180:124-135. [92] SUBRAHMANYA N,SHIN Y C,MECKL P H.A Bayesian machine learning method for sensor selection and fusion with application to on-board fault diagnostics[J].Mechanical Systems and Signal Processing,2010,24(1):182-192. [93] WIDODO A,YANG B S.Support vector machine in machine condition monitoring and fault diagnosis[J].Mechanical Systems and Signal Processing,2007,21(6):2560-2574. [94] YANG P.Research status and prospects of materials for aero-engines in China[C]∥ Proceedings of the 7th International Conference on Computer-Aided Design ,Manufacturing,Modeling and Simulation (CDMMS).Busan ,South Korea:IOP (Institure of Physics) Publishing,2021:022049.1-022049.7.[95] TAKABI J,KHONSARI M M.On the thermally-induced seizure in bearings:a review[J].Tribology International,2015,91:118-130. [96] CEYSSENS F,SADEGHPOUR S,FUJITA H,et al.Actuators:accomplishments,opportunities and challenges[J].Sensors and Actuators:A Physical,2019,295:604-611. [97] 尤政,王伟忠,陈硕,等.无线MEMS传感系统在燃气轮机等恶劣环境下的应用[J].航空学报,2014,35(8):2081-2090. [98] ZHOU L,LIU D,WANG J,et al.Triboelectric nanogenerators:fundamental physics and potential applications[J].Friction,2020,8(3):481-506. [99] WU T,WU H,DU Y,et al.Progress and trend of sensor technology for on-line oil monitoring[J].Science China Technological Sciences,2013,56(12):2914-2926. [100] 孟松鹤,丁小恒,易法军,等.高超声速飞行器表面测热技术综述[J].航空学报,2014,35(7):1759-1775. [101] 崔云先,杨琮,薛生俊,等.C/SiC复合材料表面高温瞬态温度传感器的研究[J].仪器仪表学报,2019,40(3):163-171. [102] 刘铁根,王双,江俊峰,等.航空航天光纤传感技术研究进展[J].仪器仪表学报,2014,35(8):1681-1692. [103] HAN Q,DING Z,QIN Z,et al.A triboelectric rolling ball bearing with self-powering and self-sensing capabilities[J].Nano Energy,2020,67:104277.1-104277.10. [104] JARDINE A K S,LIN D,BANJEVIC D.A review on machinery diagnostics and prognostics implementing condition-based maintenance[J].Mechanical Systems and Signal Processing,2006,20(7):1483-1510. [105] KHAN S,YAIRI T.A review on the application of deep learning in system health management[J].Mechanical Systems and Signal Processing,2018,107:241-265. [106] ZHAO R,YAN R,CHEN Z,et al.Deep learning and its applications to machine health monitoring[J].Mechanical Systems and Signal Processing,2019,115:213-237. [107] 陶飞,程颖,程江峰,等.数字孪生车间信息物理融合理论与技术[J].计算机集成制造系统,2017,23(8):1603-1611. [108] 庄存波,刘检华,熊辉,等.产品数字孪生体的内涵、体系结构及其发展趋势[J].计算机集成制造系统,2017,23(4):753-768.
点击查看大图
计量
- 文章访问数: 258
- HTML浏览量: 201
- PDF量: 230
- 被引次数: 0