留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高频高速流体振荡器工作特性

周銮良 王士奇 温新

周銮良, 王士奇, 温新. 高频高速流体振荡器工作特性[J]. 航空动力学报, 2022, 37(4): 877-885. doi: 10.13224/j.cnki.jasp.20210099
引用本文: 周銮良, 王士奇, 温新. 高频高速流体振荡器工作特性[J]. 航空动力学报, 2022, 37(4): 877-885. doi: 10.13224/j.cnki.jasp.20210099
ZHOU Luanliang, WANG Shiqi, WEN Xin. Working characteristics of a fluidic oscillator with high frequency and high speed[J]. Journal of Aerospace Power, 2022, 37(4): 877-885. doi: 10.13224/j.cnki.jasp.20210099
Citation: ZHOU Luanliang, WANG Shiqi, WEN Xin. Working characteristics of a fluidic oscillator with high frequency and high speed[J]. Journal of Aerospace Power, 2022, 37(4): 877-885. doi: 10.13224/j.cnki.jasp.20210099

高频高速流体振荡器工作特性

doi: 10.13224/j.cnki.jasp.20210099
基金项目: 航空动力基金(6141B0950399); 国家自然科学基金(12072196); 先进航空动力创新工作站(HKCX2019-01-016)
详细信息
    作者简介:

    周銮良(1997-),男,硕士生,主要从事叶轮机械气动热力学研究。

  • 中图分类号: V211;O353.5;TP61

Working characteristics of a fluidic oscillator with high frequency and high speed

  • 摘要: 设计了一种新型高频高速流体振荡器,并采用热线风速仪、高频动态压力传感器等测量手段,对其频率-压力响应特性、速度-压力响应特性及内部压力传播特性进行了实验研究。结果表明:设计的流体振荡器工作频率约为900 Hz,进出口压比为2时,其出口射流速度范围为75~239 m/s。建立了振荡周期/频率与内部尺寸的关系式,验证了振荡器内部的压力传播与反射机制,并用压力的作用机制解释了射流偏转的两个阶段,为今后设计不同流动条件下所需的流体振荡器提供了设计思路。

     

  • [1] HUCHO W H,SOVRAN G.Aerodynamics of road vehicles[J].Annual Review of Fluid Mechanics,1993,25(1):485-537.
    [2] YAO Guo,LI Fengming.Stability analysis and active control of a nonlinear composite laminated plate with piezoelectric material in subsonic airflow[J].Journal of Engineering Mathematics,2014,89(1):147-161.
    [3] GILARRANZ J L,TRAUB L W,REDINIOTIS O K.A new class of synthetic jet actuators:Part Ⅱ application to flow separation control[J].Journal of Fluids Engineering,2005,127(2):377-387.
    [4] 孙圣舒,顾蕴松,陈勇亮,等.低雷诺数自由翼斜出口合成射流分离流流动控制[J].空气动力学学报,2017,35(2):277-282.
    [5] CATTAFESTA L N,GARG S,SHUKLA D.Development of piezoelectric actuators for active flow control[J].AIAA Journal,2001,39(8):1562-1568.
    [6] SIMOES E W,FURLAN R,LEMINSKI R E B,et al.Microfluidic oscillator for gas flow control and measurement[J].Flow Measurement & Instrumentation,2005,16(1):7-12.
    [7] SEIFERT A,PACK L G,Active flow separation control on wall-mounted hump at high Reynolds numbers[J].AIAA Journal,2002,40(7):1363-1372.
    [8] GREENBLATT D,PASCHAL K B,YAO Chungsheng,et al.Experimental investigation of separation control:Part 2 zero mass-flux oscillatory blowing[J].AIAA Journal,2006,44(12):2831-2845.
    [9] TANG Hui,SALUNKHE P,ZHENG Yingying,et al.On the use of synthetic jet actuator arrays for active flow separation control[J].Experimental Thermal and Fluid Science,2014,57(9):1-10.
    [10] 李斌斌,程克明,顾蕴松.斜出口合成射流激励器S进气道分离流动控制[J].实验流体力学,2012,26(2):34-37.
    [11] ENLOE C L,MCLAUGHLIN T E,VANDYKEN R D,et al.Mechanisms and responses of a single dielectric barrier plasma actuator:plasma morphology[J].AIAA Journal,2004,42(3):589-594.
    [12] OSTERMANN F,WOSZIDLO R,NAYERI C N,et al.Properties of a sweeping jet emitted from a fluidic oscillator[J].Journal of Fluid Mechanics,2018,857:216-238.
    [13] DOLGOPYAT D,SEIFERT A.Active flow control virtual maneuvering system applied to conventional airfoil[J].AIAA Journal,2019,57(1):72-89.
    [14] JENTZSCH M,TAUBERT L,WYGNANSKI I.Using sweeping jets to trim and control a tailless aircraft model[J].AIAA Journal,2019,57(6):1-13.
    [15] KIM S H,KIM H D.Quantitative visualization of the three-dimensional flow structures of a sweeping jet[J].Journal of Visualization,2019,22(3):437-447.
    [16] WANG Shiqi,BATIKH A,BALDAS L,et al.On the modelling of the switching mechanisms of a coanda fluidic oscillator[J].Sensors and Actuators a Physical,2019,299:111618.1-111618.12.
    [17] SOHAIL M U,HAMDANI H R,PARVEZ K.Flow angularity and swirl flow analysis on transonic compressor rotor by 1-dimensional dynamic turbine engine compressor code and CFD analysis[J].Fluid Dynamics,2021,56(2):278-290.
    [18] 张乐,周洲,许晓平.飞翼布局无人机保形非对称S弯进气道设计及优化[J].航空动力学报,2016,31(11):2682-2690.
    [19] 朱剑锋,黄国平,傅鑫,等.脉冲射流控制弯曲扩压管道流动分离的特点[J].航空动力学报,2015,30(12):2942-2948.
    [20] HECKLAU M,WIEDERHOLD O,ZANDER V,et al.Active separation control with pulsed jets in a critically loaded compressor cascade[J].AIAA Journal,2011,49(8):1729-1739.
    [21] LI Jichao,DU Juan,NIE Chaoqun,et al.Review of tip air injection to improve stall margin in axial compressors[J].Progress in Aerospace Sciences,2019,106(1):15-31.
    [22] 朱剑锋,黄国平,傅鑫,等.一种控制气流分离的无源微脉冲射流技术研究[J].航空学报,2013,34(8):1757-1767.
    [23] REICHENZER F,SCHNEIDER M,DORR S.Influence of geometry on a feedback-free fluidic oscillator with nonoutlet facing jets[J].AIAA Journal,2018,56(12):4768-4774.
    [24] GEBHARD U,HEIN H,SCHMIDT U.Numerical investigation of fluidic micro-oscillators[J].Journal of Micromechanics & Microengineering,1996,6(1):115-117.
    [25] TESAR V,ZHONG S,RASHEED F.New fluidic-oscillator concept for flow-separation control[J].AIAA Journal,2013,51(2):397-405.
  • 加载中
计量
  • 文章访问数:  86
  • HTML浏览量:  7
  • PDF量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-07
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回