留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核聚变空间推进器的初步需求分析

宋俊

宋俊.核聚变空间推进器的初步需求分析[J].航空动力学报,2022,37(7):1495‑1502. doi: 10.13224/j.cnki.jasp.20210122
引用本文: 宋俊.核聚变空间推进器的初步需求分析[J].航空动力学报,2022,37(7):1495‑1502. doi: 10.13224/j.cnki.jasp.20210122
SONG Jun.Preliminary analysis on the demand of nuclear fusion space thruster[J].Journal of Aerospace Power,2022,37(7):1495‑1502. doi: 10.13224/j.cnki.jasp.20210122
Citation: SONG Jun.Preliminary analysis on the demand of nuclear fusion space thruster[J].Journal of Aerospace Power,2022,37(7):1495‑1502. doi: 10.13224/j.cnki.jasp.20210122

核聚变空间推进器的初步需求分析

doi: 10.13224/j.cnki.jasp.20210122
详细信息
    作者简介:

    宋俊(1993-),男,博士生,主要从事聚变新概念和空间推进器研究。

  • 中图分类号: V439

Preliminary analysis on the demand of nuclear fusion space thruster

  • 摘要:

    参考一种简化的、解析近似的计算模型,以地球到火星的对接任务和往返任务为例,对核聚变等离子体推进器性能关键参数如推进系统质量、比冲、任务时间、有效载荷份额及比功率等进行分析,得出了任务时间和有效载荷质量份额与聚变堆芯输出功率、推进器结构质量和比冲的依赖关系。在此基础上,结合核聚变地面商业堆的相关进展,对现有的技术做合理适当外推,理论计算表明:飞行任务能够在1~2个月内达到目的星球同时可携带超过10%的有效载荷份额,并提出了未来核聚变空间推进器的初步参数方案和设计构想,总体上能够为未来核聚变空间推进技术的发展提供一定的参考。

     

  • 图 1  标准速度增量、有效载荷份额与标准喷气速度关系

    Figure 1.  Relationship between standard speed increment,payload ratio and standard exhaust velocity

    图 2  火星对接任务性能参数依赖关系

    Figure 2.  Dependence on performance parameters of Mars rendezvous missions

    图 3  火星往返任务性能参数依赖关系

    Figure 3.  Dependence on performance parameters of Mars round trip missions

    图 4  不同燃料比率的中子功率份额

    Figure 4.  Neutron ratio of different fuel ratio

    表  1  不同核聚变等离子体推进器概念的性能参数

    Table  1.   Performance parameters of different nuclear fusion plasma thruster concepts

    核聚变约束概念比功率/(kW/kg)比冲/s推进系统质量/t
    惯性静电约束(IEC)0.023 000300
    气动磁镜(GDM)133142 0001 500
    球马克5.7520 0001 033
    碰撞束FRC概念1.51.4×10633
    FRC概念1103~1061 100
    悬浮偶极子11041 300
    球形托卡马克8.735 4351 690
    惯性约束聚变71270 000757
    磁化靶聚变16.870 485121
    脉冲Z箍缩16.219 436598
    下载: 导出CSV

    表  2  几种参数适中的核聚变空间推进器性能参数组合方案

    Table  2.   Several moderate combinations scheme of performance parameters for nuclear fusion space thruster

    参数火星对接火星对接火星对接火星往返
    假设参数距离S/m7.48×10107.48×10107.48×10107.48×1010
    聚变输出功率/109 W1232
    输入参数结构质量/t200200200200
    比冲/s10 00020 00020 00020 000
    比功率/(kW/kg)5101510
    磁喷嘴效率η0.80.80.80.8
    输出参数标准速度比c/Vc0.6320.8180.7690.632
    推进剂质量分数0.6450.3470.4330.645
    结构质量分数0.2570.2320.3120.098
    推进剂质量/t501299338501
    初始发射质量/t778861782778
    推进剂流量/(kg/s)0.1660.0830.1250.083
    有效载荷质量/t7626224476
    有效载荷份额0.0980.4210.3120.098
    任务时间/d34.941.631.469.8
    下载: 导出CSV
  • [1] 杭观荣,洪鑫,康小录,等.国外空间推进技术现状和发展趋势[J].火箭推进,2013,39(5):7⁃15.

    HANG Guanrong,HONG Xin,KANG Xiaolu,et al.Current status and development trend of space propulsion technologies abroad[J].Journal of Rocket Propulsion,2013,39(5):7⁃15.(in Chinese)
    [2] 周成,张笃周,李永,等.空间核电推进技术发展研究[J].空间控制技术与应用,2013,39(5):1⁃6.

    ZHOU Cheng,ZHANG Duzhou,LI Yong,et al.On the development of nuclear electric propulsion technology[J].Aerospace Control and Application,2013,39(5):1⁃6.(in Chinese)
    [3] 于登云,孙泽州,孟林智,等.火星探测发展历程与未来展望[J].深空探测学报,2016,3(2):108⁃113.

    YU Dengyun,SUN Zezhou,MENG Linzhi,et al.The development process and prospects for mars exploration[J].Journal of Deep Space Exploration,2016,3(2):108⁃113.(in Chinese)
    [4] 洪刚,戚峰,王建明,等.载人登陆火星任务核热推进系统方案研究[J].载人航天,2018,24(1):102⁃106.

    HONG Gang,QI Feng,WANG Jianming,et al.Nuclear thermal propulsion system design for manned mars mission[J].Manned Spaceflight,2018,24(1):102⁃106.(in Chinese)
    [5] 钱学森.星际航行概论(精)[M].北京:宇航出版社,2008.
    [6] PAGAN A S,GIl E F,GABRIELLI R A,et al.Study of magnetic confinement configurations for fusion space propulsion[C]∥Proceedings of the 4th CEAS Air & Space Conference.Linköping,Sweden:Linköping University Electronic Press,2013.
    [7] MOECKEL W E.Comparison of advanced propulsion concepts for deep space exploration[J].Journal of Spacecraft and Rockets,1972,9(12):863⁃868.
    [8] LONG K F.Deep space propulsion:a roadmap to interstellar flight[M].New York,US:Springer Science & Business Media,2011.
    [9] LABAUNE C,BACCOU C,YAHIA V,et al.Laser⁃initiated primary and secondary nuclear reactions in Boron⁃Nitride[J].Scientific Reports,2016,6(1):1⁃8.
    [10] KAMMASH T,GALBRAITH D L.Antimatter⁃driven fusion propulsion scheme for solar system exploration[J].Journal of Propulsion Power,1992,8(3):644⁃649.
    [11] 邓柏权,EMMERT G A.D⁃3He聚变动力可行性研究[J].核聚变与等离子体物理,1989,9(4):213⁃220.

    DENG Baiquan,EMMERT G A.Feasibility study of D⁃3He fusion power[J].Nuclear Fusion and Plasma Physics,1989,9(4):213⁃220.(in Chinese)
    [12] KAMMASH T,GODFREY T.An open cycle gas core fusion rocket for space exploration[J].Acta Astronautica,1997,41(4):229⁃237.
    [13] CASSIBRY J,CORTEZ R,STANIC M,et al.Case and development path for fusion propulsion[J].Journal of Spacecraft and Rockets,2015,52(2):595⁃612.
    [14] SCHULZE N R.Fusion energy for space missions in the 21st century[R].Washington,US:NASA,1991.
    [15] 石秉仁.等离子体理论⁃用球形托卡马克建立D⁃3He聚变反应堆的可能性[J].核工业西南物理研究院年报,2004(1):86⁃88.
    [16] RAZIN Y S,PAJER G,BRETON M,et al.A direct fusion drive for rocket propulsion[J].Acta Astronautica,2014,105(1):145⁃155.
    [17] ZENG Q S,CHEN D H,WANG M H.High⁃field neutral beam injection for improving the Q of a gas dynamic trap⁃based fusion neutron source[J].Nuclear Fusion,2017,57(12):126050.1⁃126050.8.
    [18] 贺贤土.惯性约束聚变研究进展和展望[J].核科学与工程,2000,20(3):248⁃251.
    [19] SYKES A,COSTLEY A E,WINDSOR C G,et al.Compact fusion energy based on the spherical tokamak[J].Nuclear Fusion,2017,58(1):016039.1⁃016039.9.
    [20] COSTLEY A E.On the fusion triple product and fusion power gain of tokamak pilot plants and reactors[J].Nuclear Fusion,2016,56(6):1⁃7.
    [21] KAMMASH T,GALBRAITH D L.Improved physics model for the gasdynamic mirror fusion propulsion system[J].Journal of propulsion and power,1998,14(1):24⁃28.
    [22] 何也熙,王龙,曾立,等.SUNIST球形托卡马克的研究进展[J].核科学与工程,2003,24(4):343⁃347.

    HE Yexi,WANG Long,ZENG Li,et al.Progress on SUNIST spherical tokamak[J].Chinese Journal of Nuclear Science and Engineering,2003,24(4):343⁃347.(in Chinese)
    [23] RYZHKOV S V.A field⁃reversed magnetic configuration and applications of high⁃temperature FRC plasma[J].Plasma Physics Reports,2011,37(13):1075⁃1081.
    [24] 林木楠.场反位形等离子体装置的研制[D].合肥:中国科学技术大学,2018.

    LIN Munan.Development of field⁃reversed configuration device[D].Hefei:University of Science and Technology of China,2018.(in Chinese)
    [25] GERWIN R A,MARKLIN G J,SGRO A G,et al.Characterization of plasma flow through magnetic nozzles[R].Los Alamos:Los Alamos National Lab,NM⁃87545,1990.
    [26] WILLIAMS C H.An analytic approximation to very high specific impulse and specific power interplanetary[M].Cleveland,US:NASA Lewis Research Center,1995.
    [27] 尹怀勤.长征九号:重型火箭在路上[J].百科知识,2016(6):20⁃21.

    YIN Huaqin.Long March 9:heavy rocket on the way[J].Encyclopedic Knowledge,2016(6):20⁃21.(in Chinese)
    [28] GILLAND J,MARRIOTT D,MIKELLIDES I,et al.Progress on the Godzilla gigawatt MPD plasma accelerator and nozzle for fusion propulsion simulations[C]∥Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Huntsville,US:AIAA,2003.
    [29] WILLIAMS C H,DUDZINSKI LA,BOROWSKI K,et al.Realizing 2001:a space odyssey piloted spherical torus nuclear fusion propulsion[J].Journal of Spacecraft& Rocket,2005,39(6):874⁃885.
    [30] 候炳林,朱学武.超导在受控核聚变能磁体工程研究中的应用概述[J].科学技术与工程,2005,5(6):357⁃363.

    HOU Bingling,ZHU Xuewu.Current status and future technical challenges for the research of superconducting controlled nuclear fusion magnet engineering[J].Science Technology and Engineering,2005,5(6):357⁃363.(in Chinese)
    [31] 陈志,冯开明,邓柏全,等.D⁃3He先进燃料聚变空间核动力推进器的可行性探索[J].科学技术与工程,2005,5(2):124‑127.

    CHEN Zhi,FENG Kaiming,DENG Baiquan,et al.The preliminary study of space nuclear power propulsor of D⁃3He advanced fuel fusion[J].Science Technology and Engineering,2005,5(2):124⁃127.(in Chinese)
    [32] WU Y C.Neutron irradiation and material damage[M].Singapore:Springer,2017.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  63
  • HTML浏览量:  5
  • PDF量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18

目录

    /

    返回文章
    返回