留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增材制造螺旋圆管航空煤油热氧化结焦特性的试验研究

张霖琪 蒋杰 阮灿 吕兴才

张霖琪,蒋杰,阮灿,等.增材制造螺旋圆管航空煤油热氧化结焦特性的试验研究[J].航空动力学报,2022,37(7):1403‑1412. doi: 10.13224/j.cnki.jasp.20210123
引用本文: 张霖琪,蒋杰,阮灿,等.增材制造螺旋圆管航空煤油热氧化结焦特性的试验研究[J].航空动力学报,2022,37(7):1403‑1412. doi: 10.13224/j.cnki.jasp.20210123
ZHANG Linqi,JIANG Jie,RUAN Can,et al.Experimental study on thermal oxidation coking characteristics of aviation kerosene in additively manufactured helical tubes[J].Journal of Aerospace Power,2022,37(7):1403‑1412. doi: 10.13224/j.cnki.jasp.20210123
Citation: ZHANG Linqi,JIANG Jie,RUAN Can,et al.Experimental study on thermal oxidation coking characteristics of aviation kerosene in additively manufactured helical tubes[J].Journal of Aerospace Power,2022,37(7):1403‑1412. doi: 10.13224/j.cnki.jasp.20210123

增材制造螺旋圆管航空煤油热氧化结焦特性的试验研究

doi: 10.13224/j.cnki.jasp.20210123
基金项目: 

上海市优秀学术带头人计划资助项目 19XD1401800

国家自然科学基金重大计划重点项目 91641202

详细信息
    作者简介:

    张霖琪(1998-),女,硕士生,主要研究方向为航空煤油氧化结焦。

  • 中图分类号: V312

Experimental study on thermal oxidation coking characteristics of aviation kerosene in additively manufactured helical tubes

  • 摘要:

    为得到环境温度、入口雷诺数和磨粒流处理工艺对RP⁃3航空煤油氧化结焦特性的影响,针对增材制造(3D打印)螺旋圆管,采用了恒定环境温度的试验方法,开展了RP⁃3航空煤油热氧化结焦试验研究。试验结果表明:当入口雷诺数和试验时间保持恒定时,无论燃油处于静止还是流动状态,燃油结焦速率和总结焦量都随着环境温度的增加而增大;当试验件壁温和试验时间保持不变时,燃油处于流动状态下,燃油结焦速率和总结焦量随着入口雷诺数的增大呈现先增加后减少的变化趋势。采用磨粒流处理后,燃油在试验件内的结焦速率大于基准工况,总结焦量是基准工况下的1.17倍。对试验件内表面进行磨粒流处理不利于抑制结焦沉积。

     

  • 图 1  试验系统示意图

    Figure 1.  Schematic diagram of the experimental system

    图 2  管壁温度测点分布示意图

    Figure 2.  Schematic diagram of the distribution of wall temperature measuring points

    图 3  管壁温度测点分布实物图

    Figure 3.  Photograph of the distribution of wall temperature measuring points

    图 4  试验件几何示意图(单位:mm)

    Figure 4.  Schematic diagram of the geometry of experimental tubes (unit:mm)

    图 5  某个试验件进行工业CT扫描重建后提取出的流道形状图

    Figure 5.  Shape of the flow channel extracted after the industrial CT scan and reconstruction of one experimental tube

    图 6  磨粒流处理后的试验件进行工业CT扫描重建后提取出的流道形状图

    Figure 6.  Shape of the flow channel extracted after the industrial CT scan and reconstruction of one experimental tube treated by abrasive flow

    图 7  称重法流程图

    Figure 7.  Flow chart of weighing method

    图 8  环境温度对壁温的影响(Re=0,t=12 h)

    Figure 8.  Effects of ambient temperature on wall temperature (Re=0,t=12 h)

    图 9  环境温度对总结焦量的影响(Re=0,t=12 h)

    Figure 9.  Effects of ambient temperature on total coking amount (Re=0,t=12 h)

    图 10  环境温度对结焦速率和壁温的影响(Rein=3 000,t=4 h)

    Figure 10.  Effects of ambient temperature on deposition rate and wall temperature (Rein=3 000,t=4 h)

    图 11  光滑管路内结焦过程[25]

    Figure 11.  Coking process in smooth tubes[25]

    图 12  环境温度对总结焦量的影响(Rein=3 000,t=4 h)

    Figure 12.  Effects of ambient temperature on total coking amount (Rein=3 000,t=4 h)

    图 13  入口雷诺数对结焦速率和壁温的影响(Tw5=500 K,t=4 h)

    Figure 13.  Effects of Reynolds number on deposition rate and wall temperature (Tw5=500 K,t=4 h)

    图 14  入口雷诺数对总结焦量的影响(Tw5=500 K,t=4 h)

    Figure 14.  Effects of Reynolds number on total coking amount (Tw5=500 K,t=4 h)

    图 15  磨粒流处理工艺对结焦速率和壁温的影响(Rein=3 000,t=4 h)

    Figure 15.  Effects of abrasive flow treatment on deposition rate and wall temperature (Rein=3 000,t=4 h)

    表  1  Hastelloy X 合金的化学成分

    Table  1.   Chemical compositions of Hastelloy X

    成分质量分数成分质量分数
    C0.072P0.003
    Cr21.49Cu0.003
    Co1.61Al<0.002
    Mo9.04Ti0.012
    W0.55O0.007 2
    Fe18.86N0.006
    B0.000 2Ni47.79
    Mn0.015Si0.2
    S0.003
    下载: 导出CSV

    表  2  Hastelloy X 合金的物理性能

    Table  2.   Physical properties of Hastelloy X

    参数数值
    295 K密度/(g/cm38.22
    熔点/K1 533.15~1 628.15
    366 K导热系数/(W/(m·K))11
    366 K比定压热容/(J/(kg·K))490
    下载: 导出CSV

    表  3  RP⁃3航空煤油热氧化结焦试验工况

    Table  3.   Working conditions for thermal oxidation coking experiments of RP⁃3 aviation kerosene

    工况入口雷诺数Rein壁温5Tw5/K环境温度Ts/K进出口压差Δp/kPa试验时间t/h备注
    1041042312静止
    2042042712静止
    3043043212静止
    43 00044072279.514变环境温度
    53 00054091979.204变环境温度
    63 00050088273.934基准工况
    75005006744.524变雷诺数
    81 00050073010.574变雷诺数
    93 00050083655.674磨粒流处理
    下载: 导出CSV

    表  4  增材制造螺旋管路流道面积

    Table  4.   Flow channel area of additive manufacturing helical tubes

    i流道面积/mm2
    试验件1试验件2试验件3试验件平均磨粒流处理
    1527.89538.69539.21535.26533.19
    2530.10537.37542.30536.59534.19
    3530.05540.24541.70537.33536.82
    4533.46539.89543.31538.89537.94
    5534.98540.91542.98539.62537.90
    6534.89543.16544.18540.74536.85
    7534.73543.62541.96540.10536.42
    8533.65541.39539.22538.09532.97
    9532.96539.64539.06537.22530.45
    10528.39536.65538.50534.51528.60
    下载: 导出CSV
  • [1] 廉筱纯,吴虎.航空发动机原理[M].西安:西北工业大学出版社,2005.
    [2] BRUENING G B,CHANG W S.Cooled cooling air systems for turbine thermal management[R].Indianapolis,Indian:International Gas Turbine & Aeroengine Congress & Exhibition,1999.
    [3] CHARLES E B,DAVID A B,STEPHEN M C,et al.Research on aviation fuel instability[R].Cesme,Turkey:AGARD Propulsion and Energetics Panel Symposium on Combustion Problems in Turbine Engines,1983.
    [4] HAZLETT R N.Thermal oxidation stability of aviation turbine fuels[M].Philadelphia,US:American Society for Testing and Materials,1991.
    [5] CHIN J S,LEFEBVRE A H.Temperature effects on fuel thermal stability[R].Orlando,US:International Gas Turbine and Aeroengine Congress and Exposition,1991.
    [6] TAO Zhi,FU Yanchen,XU Guoqiang,et al.Experimental study on influences of physical factors to supercritical RP⁃3 surface and liquid⁃space thermal oxidation coking[J].Energy & Fuels,2014,28(9):6098⁃6106.
    [7] 裴鑫岩.航空煤油超临界换热与氧化结焦理论与实验研究[D].北京:清华大学,2016.

    PEI Xinyan.Numerical and experimental study of heat transfer characteristics and oxidation deposition of aviation kerosene at supercritical pressure[D].Beijing:Tsinghua University,2016.(in Chinese)
    [8] 刘天池,范育新,赵世龙,等.高温条件下RP⁃3航空煤油的结焦特性[J].航空动力学报,2020,35(2):348⁃357.

    LIU Tianchi,FAN Yuxin,ZHAO Shilong,et al.Deposition characteristics of RP⁃3 aviation kerosene under high temperature conditions[J].Journal of Aerospace Power,2020,35(2):348⁃357.(in Chinese)
    [9] SPADACCINI L J,SOBEL D R,HUANG H.Deposit formation and mitigation in aircraft fuels[J].Journal of Engineering for Gas Turbines and Power,2001,123(4):741⁃746.
    [10] COMPANY G E.Fuel nozzle for a gas turbine engine:US10591164b2[P].2020⁃03⁃17.
    [11] FU Yanchen,XU Guoqiang,WEN Jie,et al.Thermal oxidation coking of aviation kerosene RP⁃3 at supercritical pressure in helical tubes[J].Applied Thermal Engineering,2018,128:1186⁃1195.
    [12] PEI Xinyan,HOU Lingyun.Secondary flow and oxidation coking deposition of aviation fuel[J].Fuel,2016,167:68⁃74.
    [13] 杨治,张净玉,姬鹏飞,等.典型管路RP⁃3航空煤油热氧化结焦特性试验研究[J].推进技术,2020,41(10):2374⁃2381.

    YANG Zhi,ZHANG Jingyu,JI Pengfei,et al.Experimental study on autoxidation coking characteristics of aviation kerosene RP⁃3 in typical pipeline[J].Journal of Propulsion Technology,2020,41(10):2374⁃2381.(in Chinese)
    [14] 姬鹏飞.典型管路RP⁃3航空煤油热氧化结焦沉积特性研究[D].南京:南京航空航天大学,2018.

    JI Pengfei.Research on autoxidation coking characteristics of aviation kerosene RP⁃3 in typical pipeline[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2018.(in Chinese)
    [15] TAO Zhi,FU Yanchen,XU Guoqiang,et al.Thermal and element analyses for supercritical RP⁃3 surface coke deposition under stable and vibration conditions[J].Energy & Fuels,2015,29(3):2006⁃2013.
    [16] JONES E G.Autoxidation of aviation fuels in heated tubes:surface effects[J].Energy & Fuels,1996,10:831⁃836..
    [17] 王英杰,徐国强,邓宏武,等.进口温度影响航空煤油结焦特性实验[J].航空动力学报,2009,24(9):1972⁃1976.

    WANG Yingjie,XU Guoqiang,DENG Hongwu,et al.Experimental study of influence of inlet temperature on aviation kerosene coking characteristics[J].Journal of Aerospace Power,2009,24(9):1972⁃1976.(in Chinese)
    [18] 琚印超,徐国强,郭隽,等.压力对航空煤油RP⁃3结焦的影响[J].北京航空航天大学学报,2010,36(3):257⁃260.

    JU Yinchao,XU Guoqiang,GUO Jun,et al.Effects of pressure on the coking characteristic of jet fuel RP⁃3[J].Journal of Beijing University of Aeronautics and Astronautics,2010,36(3):257⁃260.(in Chinese)
    [19] 常坤,梁恩泉,张韧,等.金属材料增材制造及其在民用航空领域的应用研究现状[J].材料导报,2021,35(3):3176⁃3182.

    CHANG Kun,LIANG Enquan,ZHANG Ren,et al.Status of metal additive manufacturing and its application research in the field of civil aviation[J].Materials Reports,2021,35(3):3176⁃3182.(in Chinese)
    [20] 荀柏秋,李琦,赵乌恩.高温材料在燃气轮机中的应用和发展[J].热能动力工程,2004,19(5):447⁃449.

    XUN Baiqiu,LI Qi,ZHAO Wuen.Application and development of high⁃temperature alloys for gas turbines[J].Journal of Engineering for Thermal Energy &Power,2004,19(5):447⁃449.(in Chinese)
    [21] TUCHIDA K,WATHANYU K,SURINPHONG S.Thermal oxidation behavior of TiAlCrSiN and AlCrTiN films on HastelloyX[J].Advanced Materials Research,2012,486:400‑405.
    [22] WANG Haijun,LUO Yushan,GU Hongfang,et al.Experimental investigation on heat transfer and pressure drop of kerosene at supercritical pressure in square and circular tube with artificial roughness[J].Experimental Thermal and Fluid Science,2012,42:16⁃24.
    [23] 姚燕生,周瑞根,张成林,等.增材制造复杂金属构件表面抛光技术[EB/OL].[2021⁃05⁃26].https:∥kns.cnki.net/kcms/detail/11.1929.V.20210524.2051.015.html. https:∥kns.cnki.net/kcms/detail/11.1929.V.20210524.2051.015.html
    [24] GIOVANETTI A J,SZETELAT E J.Long⁃term deposit formation in aviation turbine fuel at elevated temperature[J].Journal of Propulsion and Power,1986,2(5):450⁃456.
    [25] LIU Zhaohui,PAN Hui,FENG Song,et al.Dynamic behaviors of coking process during pyrolysis of China aviation kerosene RP⁃3[J].Applied Thermal Engineering,2015,91:408‑416.
    [26] FU Yanchen,WEN Jie,TAO Zhi,et al.Surface coking deposition influences on flow and heat transfer of supercritical hydrocarbon fuel in helical tubes[J].Experimental Thermal and Fluid Science,2017,85:257⁃265.
    [27] 周伟星,韩之雄.关键物理因素对RP⁃3航空煤油氧化结焦影响的数值研究[R].福建 厦门:2020年中国工程热物理学会燃烧学年会,2020.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  66
  • HTML浏览量:  8
  • PDF量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19

目录

    /

    返回文章
    返回