留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低雷诺数仿生分离流翼型气动特性初探

张庆 薛榕融 马浩统

张庆,薛榕融,马浩统.低雷诺数仿生分离流翼型气动特性初探[J].航空动力学报,2022,37(7):1516‑1527. doi: 10.13224/j.cnki.jasp.20210154
引用本文: 张庆,薛榕融,马浩统.低雷诺数仿生分离流翼型气动特性初探[J].航空动力学报,2022,37(7):1516‑1527. doi: 10.13224/j.cnki.jasp.20210154
ZHANG Qing,XUE Rongrong,MA Haotong.Preliminary aerodynamic exploration for bioinspired separated flow airfoil at low Reynolds number[J].Journal of Aerospace Power,2022,37(7):1516‑1527. doi: 10.13224/j.cnki.jasp.20210154
Citation: ZHANG Qing,XUE Rongrong,MA Haotong.Preliminary aerodynamic exploration for bioinspired separated flow airfoil at low Reynolds number[J].Journal of Aerospace Power,2022,37(7):1516‑1527. doi: 10.13224/j.cnki.jasp.20210154

低雷诺数仿生分离流翼型气动特性初探

doi: 10.13224/j.cnki.jasp.20210154
基金项目: 

四川省海内外高层次人才“千人计划” A18S001

国家自然科学基金面上项目 62175243

详细信息
    作者简介:

    张庆(1987-),男,讲师,博士,主要研究方向为仿生飞行器。E⁃mail:zhangqing2220@mail.nwpu.edu.cn

    通讯作者:

    薛榕融(1990-),男,助理研究员,博士,主要研究方向为飞行力学。E⁃mail:xuerongrong@ioe.ac.cn

  • 中图分类号: V211.41+2

Preliminary aerodynamic exploration for bioinspired separated flow airfoil at low Reynolds number

  • 摘要:

    为了探索适合低雷诺数微型飞行器的翼型形式,基于对自然界鸟类和昆虫滑翔飞行时翅膀形状的观察,设计出一种由前缘削尖平板和后缘圆弧翼型组合而成的仿生分离流翼型。数值研究结果表明,气流在削尖平板的前缘点强制分离,形成大范围低压分离流动,随后在后部圆弧翼上表面再附形成稳定低压涡流区,从而实现较高的气动效率和较强的抵抗大气湍流的能力。上削尖平板可以使流动分离点固定在削尖点。相对于单独平板,仿生分离流翼型的升力系数有大幅提高,迎角为4°时提高了112%。此外,仿生分离流翼型可以在较宽的迎角范围内(4°~20°)保持高升力,但是迎角增加,阻力也快速增大,因此小迎角情况下(小于4°)气动效率更优。

     

  • 图 8  不同迎角下三种翼型表面的压力系数分布对比

    Figure 8.  Comparison of wall pressure coefficient of three airfoils at different angles of attack

    表  1  不同方法计算的升力系数阻力系数对比

    Table  1.   Comparison of lift and drag coefficients by different computational methods

    计算方法升力系数(相对误差)阻力系数(相对误差)
    实验值0.561(参考值)0.021(参考值)
    无黏模型0.654 1(16.60%)0.002 5(-88.10%)
    S⁃A模型0.556 1(-0.87%)0.021 9(4.29%)
    SST κ⁃ω模型0.548 1(-2.30%)0.020 5(-2.38%)
    γReθ转捩模型0.565 4(0.78%)0.022 3(6.19%)
    下载: 导出CSV
  • [1] LUCA M D,MINTCHEV S,SU Y,et al.A bioinspired separated flow wing provides turbulence resilience and aerodynamic efficiency for miniature drones[J].Science Robotics,2020,5(38):eaay8533.1⁃eaay8533.34.
    [2] FLOREANO D,WOOD R J.Science,technology and the future of small autonomous drones[J].Nature,2015,521(7553):460⁃466.
    [3] NAKATA T,LIU H,TANAKA Y,et al.Aerodynamics of a bio⁃inspired flexible flapping⁃wing micro air vehicle[J].Bioinspiration and Biomimetics,2011,6(4):045002.1⁃045002.11.
    [4] LIAN Y,SHYY W,VIIERU D,et al.Membrane wing aerodynamics for micro air vehicles[J].Progress in Aerospace Sciences,2003,39(6/7):425⁃465.
    [5] SHYY W,AONO H,CHIMAKURTHI S K,et al.Recent progress in flapping wing aerodynamics and aeroelasticity[J].Progress in Aerospace Sciences,2010,46(7):284⁃327.
    [6] LIAN Y,BROERING T,HORD K,et al.The characterization of tandem and corrugated wings[J].Progress in Aerospace Sciences,2014,65:41⁃69.
    [7] 杨文青,宋笔锋,宋文萍,等.仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J].实验流体力学,2015,29(3):1⁃10.

    YANG Wenqing,SONG Bifeng,SONG Wenping,et al.Experimental investigation on the unsteady aerodynamic characteristics of biplane MAV in horizontal gust[J].Journal of Experiments in Fluid Mechanics,2015,29(3):1⁃10.(in Chinese)
    [8] 肖天航,罗东明,郑祥明,等.仿生飞行器非定常气动优化设计研究进展与挑战[J].空气动力学学报,2018,36(1):80‑87.

    XIAO Tianhang,LUO Dongming,ZHENG Xiangming,et al.Progress and challenges in unsteady aerodynamic optimization design of bionic flapping⁃wings[J].Acta Aerodynamica Sinica,2018,36(1):80⁃87.(in Chinese)
    [9] CROON G D.Flapping wing drones show off their skills[J].Science Robotics,2020,5(44):eabd0233.1⁃eabd0233.2.
    [10] TANG H,LEI Y,LI X,et al.Numerical investigation of the aerodynamic characteristics and attitude stability of a bio⁃inspired corrugated airfoil for MAV or UAV applications[J].Energies,2019,12(20):4021.1⁃4021.25.
    [11] 叶建,邹正平,陆利蓬,等.低雷诺数下翼型前缘流动分离机制的研究[J].北京航空航天大学学报,2004,30(8):693‑697.

    YE Jian,ZOU Zhengping,LU Lipeng,et al.Investigation of separation mechanism for airfoil leading edge flow at low Reynolds number[J].Journal of Beijing University of Aeronautics and Astronautics,2004,30(8):693⁃697.(in Chinese)
    [12] 李锋,白鹏,石文,等.微型飞行器低雷诺数空气动力学[J].力学进展,2007,37(2):257⁃268.

    LI Feng,BAI Peng,SHI Wen,et al.Aerodynamics of small vehicles[J].Advances in Mechanics,2007,37(2):257⁃268.(in Chinese)
    [13] VAN BOKHORST E,DE KAT R,ELSINGA G E,et al.Feather roughness reduces flow separation during low Reynolds number glides of swifts[J].Journal of Experimental Biology,2015,218(20):3179⁃3191.
    [14] FLINT T J,JERMY M C,NEW T H,et al.Computational study of a pitching bio⁃inspired corrugated airfoil[J].International Journal of Heat and Fluid Flow,2017,65:328⁃341.
    [15] 高飞,吕建刚,张仲志,等.组合合页式扑翼在悬停状态下的三维仿真分析[J].上海交通大学学报,2017,51(2):166‑173.

    GAO Fei,Jiangang LÜ,ZHANG Zhongzhi,et al.Three⁃dimensional simulation of the modular hinge⁃type wings in hovering flight[J].Journal of Shanghai Jiaotong University,2017,51(2):166⁃173.(in Chinese)
    [16] VIDELER J J,STAMHUIS E J,POVEL G D E.Leading⁃edge vortex lifts swifts[J].Science,2004,306(5703):1960⁃1962.
    [17] LENTINK D,MÜLLER U K,STAMHUIS E J,et al.How swifts control their glide performance with morphing wings[J].Nature,2007,446(7139):1082⁃1085.
    [18] MA K Y,CHIRARATTANANON P,FULLER S B,et al.Controlled flight of a biologically inspired,insect⁃scale robot[J].Science,2013,340(6132):603⁃607.
    [19] WANG J J,WANG Z.Experimental investigations on leading⁃edge vortex structures for flow over non⁃slender delta wings[J].Chinese Physics Letters,2008,25(7):2550⁃2553.
    [20] WANG J J,LIU Y.Experimental study on lift characteristics for flow over flexible cropped delta wings[J].Journal of Aircraft,2008,45(6):2158⁃2161.
    [21] VERHAAGEN N G.Leading⁃edge radius effects on aerodynamic characteristics of 50⁃degree delta wings[J].Journal of Aircraft,2012,49(2):521⁃531.
    [22] RIVAL D E,KRIEGSEIS J,SCHAUB P,et al.Characteristic length scales for vortex detachment on plunging profiles with varying leading⁃edge geometry[J].Experiments in Fluids,2014,55(1):1660.1⁃1660.25.
    [23] OL M V,GHARIB M.Leading⁃edge vortex structure of nonslender delta wings at low Reynolds number[J].AIAA Journal,2003,41(1):16⁃26.
    [24] MATLOFF L Y,CHANG E,FEO T J,et al.How flight feathers stick together to form a continuous morphing wing[J].Science,2020,367(6475):293⁃297.
    [25] 张庆,叶正寅.基于雨燕翅膀的仿生三角翼气动特性计算研究[J].力学学报,2021,53(2):373⁃385.

    ZHANG Qing,YE Zhengyin.Computational investigations for aerodynamic performance of bio‑inspired delta‑wing based on swift⁃wing[J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(2):373⁃385.(in Chinese)
    [26] 李永乐,汪斌,黄林,等.平板气动力的 CFD 模拟及参数研究[J].工程力学,2009,26(3):207⁃211.

    LI Yongle,WANG Bin,HUANG Lin,et al. CFD simulation and parameter study on aerodynamic force of flat plate [J].Engineering Mechanics,2009,26(3):207⁃211.(in Chinese)
    [27] 张庆,叶正寅.排式双翼布局低雷诺数气动特性计算研究[J].工程力学,2019,36(10):244⁃256.

    ZHANG Qing,YE Zhengyin.Computational investigations for aerodynamic characteristic analysis of low Reynolds number doubly⁃tandem wing configurations[J].Engineering Mechanics,2019,36(10):244⁃256.(in Chinese)
    [28] 张庆,叶正寅.基于气动导数的类X⁃37B飞行器纵向稳定性分析[J].北京航空航天大学学报,2020,46(1):77⁃85.

    ZHANG Qing,YE Zhengyin.Longitudinal stability analysis for X⁃37B like trans⁃atmospheric orbital test vehicle based on aerodynamic derivatives[J].Journal of Beijing University of Aeronautics and Astronautics,2020,46(1):77⁃85.(in Chinese)
    [29] 张庆,叶正寅.NACA0012翼型跨声速强迫运动非定常气动力模型[J].哈尔滨工程大学学报,2020,41(11):1683⁃1688.

    ZHANG Qing,YE Zhengyin.Unsteady aerodynamic model of NACA0012 associated with forced oscillations and translations in transonic flight[J].Journal of Harbin Engineering University,2020,41(11):1683⁃1688.(in Chinese)
    [30] LIAN Y S,SHYY W.Laminar⁃turbulent transition of a low Reynolds number rigid or flexible airfoil[J].AIAA Journal,2007,45(7):1501⁃1513.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  80
  • HTML浏览量:  19
  • PDF量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07

目录

    /

    返回文章
    返回