留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型高温渗碳不锈航空齿轮钢齿轮的弯曲疲劳失效机理

唐鑫 朱如鹏 杨卯生 唐朋 李发家 熊兴波

唐鑫, 朱如鹏, 杨卯生, 唐朋, 李发家, 熊兴波. 新型高温渗碳不锈航空齿轮钢齿轮的弯曲疲劳失效机理[J]. 航空动力学报, 2022, 37(3): 589-599. doi: 10.13224/j.cnki.jasp.20210155
引用本文: 唐鑫, 朱如鹏, 杨卯生, 唐朋, 李发家, 熊兴波. 新型高温渗碳不锈航空齿轮钢齿轮的弯曲疲劳失效机理[J]. 航空动力学报, 2022, 37(3): 589-599. doi: 10.13224/j.cnki.jasp.20210155
TANG Xin, ZHU Rupeng, YANG Maosheng, TANG Peng, LI Fajia, XIONG Xingbo. Bending fatigue failure mechanism of the new high temperature carburizing stainless aviation steel gear[J]. Journal of Aerospace Power, 2022, 37(3): 589-599. doi: 10.13224/j.cnki.jasp.20210155
Citation: TANG Xin, ZHU Rupeng, YANG Maosheng, TANG Peng, LI Fajia, XIONG Xingbo. Bending fatigue failure mechanism of the new high temperature carburizing stainless aviation steel gear[J]. Journal of Aerospace Power, 2022, 37(3): 589-599. doi: 10.13224/j.cnki.jasp.20210155

新型高温渗碳不锈航空齿轮钢齿轮的弯曲疲劳失效机理

doi: 10.13224/j.cnki.jasp.20210155
基金项目: 国家基金面上项目(51975274); 南京航空航天大学“直升机传动技术重点实验室”开放课题(HTL-O-20K02)
详细信息
    作者简介:

    唐鑫(1983-),男,研究员,博士生,主要从事直升机传动、传动强度和振动等方面研究。

  • 中图分类号: V233.1;TH113.1

Bending fatigue failure mechanism of the new high temperature carburizing stainless aviation steel gear

  • 摘要: 以新型高温渗碳不锈航空齿轮钢圆柱齿轮为研究对象,采用国标GB/T 14230-1993规定的“B试验法”开展了齿轮弯曲疲劳试验,并对轮齿的断裂的失效机理进行了研究。分析结果发现存在三种造成轮齿断裂失效的诱因:表面碳化物、表面缺陷和内部碳化物。其中,表面碳化物对轮齿弯曲疲劳寿命的影响比内部碳化物和表面加工缺陷都要严重。当齿面没有碳化物和加工缺陷时,在长时间循环应力作用下会产生内部碳化物,进而造成裂纹萌生和扩展,较小尺寸碳化物会形成粗糙的“鱼眼”区形貌。采用航空新型高温渗碳不锈航空齿轮钢的齿轮要得到较高的寿命,应当在加工过程中控制轮齿表面及近表面碳化物尺寸、数量及形状系数和表面加工缺陷,以避免在轮齿表面形成裂纹源。

     

  • [1] 刘子强,陈亮,万文铭.关于齿轮单齿脉动弯曲疲劳试验中的几个问题[J].机械传动,2017,41(3):151-154.
    [2] 李文正.圆弧齿轮的几种损伤形式及其防止措施[J].装备制造技术,2015(6):263-264,279.
    [3] 朱孝录.齿轮的试验技术与设备[M].北京:机械工业出版社,1988.
    [4] 胡晓煜.T700发动机发展综述[R].北京:中国航空工业发展研究中心,国防科技情报研究报告HY2003-020,2003.
    [5] 于海旭.齿轮疲劳失效分析与工艺参数优化[J].失效分析与预防,2018,13(3):189-195.
    [6] 张洛明,张向威.工业结构钢疲劳极限的断裂力学研究[J].塑性工程学报,2009,16(4):162-166.
    [7] 樊俊星,邓召义.航空齿轮传动的可靠性优化设计[J].上海大学学报(自然科学版),2001,3(7):205-208.
    [8] 朱鹏飞,严宏志,陈志,等.渗碳齿轮齿根喷丸强化研究现状与展望[J].表面技术,2021,50(1):10-27,46.
    [9] 李宁.粗糙度对渗碳淬火18CrNiMo7-6钢旋转弯曲疲劳寿命的影响研究[D].郑州:郑州大学,2020.
    [10] 秦超.齿轮弯曲疲劳强度及疲劳裂纹扩展研究[D].郑州:河南工业大学,2015.
    [11] 肖娜.高性能重载齿轮钢疲劳破坏行为及夹杂物评估技术研究[D].北京:北京交通大学,2020.
    [12] 冷小刚,陈秀玉,卢金生,等.离子渗氮齿轮的弯曲疲劳强度[J].齿轮,1988,4(12):40-42,49.
    [13] 涂小龙.重型汽车齿轮热处理变形控制[D].杭州:浙江大学,2005.
    [14] XI L.Investigation of the region of fatigue crack initiation in a transmission gear[J].Materials Science and Engineering:A,2010,527(6):1377-1382.
    [15] WINKLER K J,SCHURER S,TOBIE T,et al.Investigations on the tooth root bending strength and the fatigue fracture characteristics of case-carburized and shot peened gears of different sizes[J].Proceedings of the institution of mechanical engineers:Part C Journal of Mechanical Engineering Science,2019,233(21/22):7338-7349.
    [16] SHIOZAWA K,MURAI M,SHIMATANI Y,et al.Transition of fatigue failure mode of Ni-Cr-Mo low-alloy steel in very high cycle regime[J].International Journal of Fatigue,2010,32(3):541-550.
    [17] FUCHS D,SCHURER S,TOBIE T,et al.New consideration of non-metallic inclusions calculating local tooth root load carrying capacity of high-strength,high-quality steel gears[R].Lyon,France:International Gear Conference,2018.
    [18] FUCHS D,SCHURER S,TOBIE T,et al.A model approach for considering nonmetallic inclusions in the calculation of the local tooth root load-carrying capacity of high-strength gears made of high-quality steels[J].Proceedings of the institution of mechanical engineers:Part C Journal of Mechanical Engineering Science,2019,233(21/22):7309-7317.
    [19] 唐鑫,朱如鹏,廖梅军,等 .第三代航空齿轮钢圆柱齿轮弯曲疲劳强度性能测试分析[J].航空动力学报,2021,36(8):1756-1764.
  • 加载中
计量
  • 文章访问数:  116
  • HTML浏览量:  12
  • PDF量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回