留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型结冰风洞中冰晶热/力平衡特性数值研究

郭向东 胡站伟 丁亮 易贤 张平涛

郭向东, 胡站伟, 丁亮, 易贤, 张平涛. 大型结冰风洞中冰晶热/力平衡特性数值研究[J]. 航空动力学报, 2022, 37(3): 478-491. doi: 10.13224/j.cnki.jasp.20210157
引用本文: 郭向东, 胡站伟, 丁亮, 易贤, 张平涛. 大型结冰风洞中冰晶热/力平衡特性数值研究[J]. 航空动力学报, 2022, 37(3): 478-491. doi: 10.13224/j.cnki.jasp.20210157
GUO Xiangdong, HU Zhanwei, DING Liang, YI Xian, ZHANG Pingtao. Numerical investigation of thermal and mechanical equilibrium characteristics of ice crystal in large icing wind tunnel[J]. Journal of Aerospace Power, 2022, 37(3): 478-491. doi: 10.13224/j.cnki.jasp.20210157
Citation: GUO Xiangdong, HU Zhanwei, DING Liang, YI Xian, ZHANG Pingtao. Numerical investigation of thermal and mechanical equilibrium characteristics of ice crystal in large icing wind tunnel[J]. Journal of Aerospace Power, 2022, 37(3): 478-491. doi: 10.13224/j.cnki.jasp.20210157

大型结冰风洞中冰晶热/力平衡特性数值研究

doi: 10.13224/j.cnki.jasp.20210157
详细信息
    作者简介:

    郭向东(1989-),男,工程师,硕士,主要研究方向为结冰空气动力学。E-mail:easterkuo@163.com

  • 中图分类号: V233.94

Numerical investigation of thermal and mechanical equilibrium characteristics of ice crystal in large icing wind tunnel

  • 摘要: 为明晰大型结冰风洞中冰晶热/力平衡特性,发展了基于欧拉法的冰晶运动和传热传质耦合计算方法,模拟了典型大型结冰风洞构型内冰晶运动和传热过程,从沉降收缩、动量平衡和热平衡三个方面,考察了颗粒形状和体积密度的影响。结果表明:颗粒形状和体积密度对小尺寸冰晶的热/力平衡特性无显著影响。降低颗粒球形度和体积密度会抑制大尺寸冰晶沉降收缩,增大构型出口处冰晶云雾覆盖范围。减小颗粒球形度和体积密度会增大颗粒修正阻力系数和修正努塞尔数,提高颗粒动量跟随性和热跟随性,促使构型出口处大尺寸冰晶趋近动量平衡和热平衡状态。在典型大尺寸冰晶计算工况下,构型出口处球形颗粒的速度差和温度差约为21 m/s和8.6 ℃,而平板形低体积密度颗粒的参数偏差则分别约为1 m/s和5.8 ℃。

     

  • [1] MASON J G,STRAPP L W,CHOW P.The ice particle threat to engines in flight[R].AIAA-2006-206,2006.
    [2] Federal Aviation Administration.Airplane and engine certification requirements in supercooled large drop,phase mixed,and ice crystal icing conditions[R].FAA-2010-0636,2014.
    [3] 郭向东,张平涛,赵照,等.大型结冰风洞云雾场适航应用符合性验证[J].航空学报,2020,41(10):123879.1-123879.15.
    [4] AL-KHALIL K,IRANI E,MILLER D.Mixed-phase icing simulation and testing at the cox icing wind tunnel[R].AIAA-2003-0903,2003.
    [5] BAUMERT A,BANSMER S,BACHER M.Implementation of an innovative ice crystal generation system to the icing wind tunnel braunschweig[R].AIAA-2015-1225,2015.
    [6] BAUMERT A,BANSMER S,TRONTIN P,et al.Experimental and numerical investigations on aircraft icing at mixed phase conditions[J].International Journal of Heat and Mass Transfer,2018,123:957-978.
    [7] KOTT B C,STRUK P M,BARTKUS T P.A study of ice-crystal icing erosion using the NASA icing research tunnel and propulsion systems laboratory[R].AIAA-2020-2842,2020.
    [8] 郭向东,柳庆林,刘森云,等.结冰风洞中过冷大水滴云雾演化特性数值研究[J].航空学报,2020,41(8):123655.1-123655.18.
    [9] PRUPPACHER H R,KLETT J D.Microphysics of clouds and precipitation[M].New York:Kluwer Academic Publishers,2004.
    [10] BARTKUS T P,TSAO J C,STRUK P,et al.Numerical analysis of mixed-phase icing cloud simulations in the NASA Propulsion Systems Laboratory[R].AIAA-2017-2537,2017.
    [11] BARTKUS T P,STRUK P M,TSAO J C,et al.Comparisons of mixed-phase icing cloud simulations with experiments conducted at the NASA Propulsion Systems Laboratory[R].AIAA-2017-4243,2017.
    [12] BARTKUS T P,STRUK P M.Comparisons of CFD simulations of icing wind tunnel clouds with experiments conducted at the NASA Propulsion Systems Laboratory[R].AIAA-2020-2832,2020.
    [13] CURRIE T,FULEKI D,DAVISON C.Simulation of ice particle melting in the NRCC RATFac mixed-phase icing tunnel[R].SAE Technical Paper 2015-01-2107,2015.
    [14] BAUMERT A,BANSMER S,SATTLER S,et al.Simulating natural ice crystal cloud conditions for icing wind tunnel experiments:a review on the design,commissioning and calibration of the TU Braunschweig ice crystal generation system[R].AIAA-2016-4053,2016.
    [15] IULIANO E,MONTREUIL E,NORDE E,et al.Modelling of non-spherical particle evolution for ice crystals simulation with an Eulerian approach[R].SAE Technical Paper 2015-01-2138,2015.
    [16] VILLEDIEU P,TRONTIN P,CHAUVIN R.Glaciated and mixed-phase ice accretion modeling using ONERA 2D icing suite[R].AIAA-2014-2199,2014.
    [17] TRONTIN P,BLANCHARD G,VILLEDIEU P.A comprehensive numerical model for mixed-phase and glaciated icing conditions[R].AIAA-2016-3742,2016.
    [18] NORDE E,AVAN DER WEIDE E T,HOEIJMAKERS H W M.Eulerian method for ice crystal icing[J].AIAA Journal,2018,56(1):222-234.
    [19] 袁庆浩,樊江,白广忱.航空发动机内部冰晶结冰研究综述[J].推进技术,2018,39(12):2641-2650.
    [20] 沈浩,韩冰冰,张丽芬.航空发动机中冰晶冰的研究进展[J].实验流体力学,2020,34(6):1-7.
    [21] 姜飞飞,董威,郑梅,等.冰晶在涡扇发动机内相变换热特性[J].航空动力学报,2019,34(3):567-575.
    [22] 卜雪琴,李皓,黄平,等.二维机翼混合相结冰数值模拟[J].航空学报,2020,41(12):124085.1-124085.11.
    [23] 郭向东,王梓旭,李明,等.结冰风洞中液滴过冷特性数值研究[J].航空学报,2018,39(1):121254.1-121254.9.
    [24] 郭向东,王梓旭,李明,等.结冰风洞中液滴相变效应数值研究[J].航空学报,2018,39(1):21586.1-21586.13.
    [25] NORDE E.Eulerian method for ice crystal icing in turbofan engines[D].Enschede,The Netherlands:University of Twente,2017.
    [26] STRAPP J W,KOROLEV A,RATVASKY T,et al.The high ice water content study of deep convective clouds:report on science and technical plan[R].Federal Aviation Administration William Hughes Technical Center,DOT/FAA/TC-14/31,2016.
    [27] DEZITTER F,GRANDIN A,BRENGUIER J L,et al.HAIC (high altitude ice crystals)[R].AIAA-2013-2674,2013.
    [28] LEROY D,FONTAINE E,SCHWARZENBOECK A,et al.Ice crystal sizes in high ice water content clouds:Part Ⅰ on the computation of median mass diameter from in situ measurements[J].Journal of Atmospheric and Oceanic Technology,2016,33(11):2461-2476.
    [29] LEROY D,FONTAINE E,SCHWARZENBOECK A,et al.Ice crystal sizes in high ice water content clouds:Part Ⅱ statistics of mass diameter percentiles in tropical convection observed during the HAIC/HIWC project[J].Journal of Atmospheric and Oceanic Technology,2017,34(11):117-135.
    [30] GANSER G H.A rational approach to drag prediction of spherical and non-spherical particles[J].Powder Technology,1993,77(2):143-152.
    [31] HINDMARSH J P,RUSSEL A B,CHEN X D.Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet[J].International Journal of Heat and Mass Transfer,2003,46(7):1199-1213.
  • 加载中
计量
  • 文章访问数:  117
  • HTML浏览量:  31
  • PDF量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回