留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型激波针减阻降热特性及流动机理

何坤 袁化成

何坤, 袁化成. 典型激波针减阻降热特性及流动机理[J]. 航空动力学报, 2022, 37(5): 1064-1078. doi: 10.13224/j.cnki.jasp.20210178
引用本文: 何坤, 袁化成. 典型激波针减阻降热特性及流动机理[J]. 航空动力学报, 2022, 37(5): 1064-1078. doi: 10.13224/j.cnki.jasp.20210178
HE Kun, YUAN Huacheng. Drag and heat reduction characteristics and flow mechanism of typical aero-spikes[J]. Journal of Aerospace Power, 2022, 37(5): 1064-1078. doi: 10.13224/j.cnki.jasp.20210178
Citation: HE Kun, YUAN Huacheng. Drag and heat reduction characteristics and flow mechanism of typical aero-spikes[J]. Journal of Aerospace Power, 2022, 37(5): 1064-1078. doi: 10.13224/j.cnki.jasp.20210178

典型激波针减阻降热特性及流动机理

doi: 10.13224/j.cnki.jasp.20210178
详细信息
    作者简介:

    何坤(2000-),男,硕士生,主要从事航空发动机进气预冷技术的研究。

    通讯作者:

    袁化成(1979-),男,教授,博士,主要从事飞行器进排气系统技术研究。E-mail:yuanhuacheng@nuaa.edu.cn

  • 中图分类号: V211.3

Drag and heat reduction characteristics and flow mechanism of typical aero-spikes

  • 摘要: 为研究激波针对超/高超声速钝头飞行器进行减阻降热的相关特性,采用数值模拟方法对6种典型激波针构型的流动特征开展系统研究。给出了激波针长度、来流马赫数对流动特征的影响规律,并对其形成机理进行了探讨。结果显示:马赫数较低时,头部有扰流物的5种激波针在回流区即将分裂时减阻率最大;马赫数较高时,减阻率在回流区分裂前后出现局部峰值,但最大减阻率将出现在回流区分裂后更长的激波针长度下。马赫数为3时,6种构型减阻率达最大时的相对长度在0.8~1.2之间,相比而言,球型、半球型和双锥型的减阻效果最好,最大减阻率为45%~50%;圆锥型最差,为20%~25%,明显低于头部有扰流物的构型。相同的激波针长度下,头部有扰流物构型的减阻率随马赫数增大而增大,圆锥型则相反。流场回流区、分离激波、弓形激波、局部膨胀流动等导致的压力分布变化是构型整体阻力变化的主要成因。

     

  • [1] ANDERSON J D.Fundamentals of aerodynamics[M].New York:McGraw-Hill Education,2010.
    [2] 战培国.国外钝头体减阻降热概念创新研究[J].飞航导弹,2015(3):14-17.
    [3] ALEXANDER S R.Results of tests to determine the effect of a conical wind shield on the drag of a bluff body at supersonic speeds[R].Hampton,US:NASA Langley Research Center,1947.
    [4] PILAND R O,PUTLAND L W,Zero-lift drag of several conical and blunt nose shapes obtained in free flight at Mach number of 0.7 to 1.3[R].NACA RM L54A27,1956.
    [5] RIGGINS D W,NELSON H F,JOHNSON E.Blunt-body wave drag reduction using focused energy deposition[R].AIAA 98-1647,1998.
    [6] MEYER B,NELSON H F,RIGGINS D W.Hypersonic drag and heat-transfer reduction using a forward-facing jet[R].AIAA-99-4880,1999.
    [7] IMAMURA O,WATANUKI T,SUZUKI K,et al.Breathing blunt nose for drag reduction at hypersonic speeds[J].Journal of Visualization,2008,11(4):280.
    [8] HAHN M.Pressure distribution and mass injection effects in the transitional separated flow over a spiked body at supersonic speed[J].Journal of Fluid Mechanics,1966,24(2):209-223.
    [9] 耿云飞,阎超.联合激波针-逆向喷流方法的新概念研究[J].空气动力学学报,2010,28(4):436-440.
    [10] JIANG Zonglin,LIU Yunfeng,HAN Guilai,et al.Conceptual study on non-ablative TPS for hypersonic vehicles[R].AIAA-2011-2372,2011.
    [11] WANG Zhen’guo,SUN Xiwan,HUANG Wei,et al.Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows:A survey[J].Acta Astronautica,2016,129:95-110.
    [12] AHMED M Y M,QIN Ning.Forebody shock control devices for drag and aero-heating reduction:A comprehensive survey with a practical perspective[J].Progress in Aerospace Sciences,2020,112:1-30.
    [13] CRAWFORD D H.Investigation of the flow over a spiked-nose hemisphere-cylinder[R].NASA TN D-118,1959.
    [14] MOTOYAMA N,MIHARA K,MIYAJIMA R,et al.Thermal protection and drag reduction with use of spike in hypersonic flow[R].AIAA-2001-1828,2001.
    [15] KALIMUTHU R,MEHTA R C,RATHAKRISHNAN E.Experimental investigation on spiked body in hypersonic flow[J].The Aeronautical Journal,2008,112(1136):593-598.
    [16] 李少勋,阎超.带激波针的钝体高超声速绕流的数值模拟[R].长沙:第13届全国激波与激波管学术会议,2008.
    [17] SRULIJES J,GNEMMI P,RUNNE K,et al.High-pressure shock tunnel experiments and CFD calculations on spike-tipped blunt bodies[R].AIAA-2002-2918,2002.
    [18] 李永红,高川,唐新武.激波针气动特性及外形参数优化研究[J].兵工学报,2016,37(8):1415-1420.
    [19] SAHOO D,DAS S,KUMAR P,et al.Effect of spike on steady and unsteady flow over a blunt body at supersonic speed[J].Acta Astronautica,2016,128:521-533.
    [20] XUE Yuan,WANG Liang,FU Song.Drag reduction and aerodynamic shape optimization for spike-tipped supersonic blunt nose[J].Journal of Spacecraft and Rockets,2018,55(3):552-560.
    [21] YAMAUCHI M,FUJII K,TAMURA Y,et al.Numerical investigation of supersonic flow around a spiked blunt-body[R].AIAA-93-0887,1993.
    [22] 朱亮,陈雄,周长省,等.侧向喷流对超声速流动中支杆减阻降热特性影响的研究[J].推进技术,2018,39(2):326-334.
    [23] EGHLIMA Z,MANSOUR K,FARDIPOUR K.Heat transfer reduction using combination of spike and counterflow jet on blunt body at high Mach number flow[J].Acta Astronautica,2018,143:92-104.
    [24] 马坤,朱亮,陈雄,等.高超声速流场支杆射流减阻降热的流热耦合[J].航空动力学报,2020,35(4):793-804.
    [25] HUANG Jie,YAO Weixing.Hypersonic drag reduction mechanism of a novel combinational spike and multi-opposing jets aerodynamic configuration[J].Acta Astronautica,2020,171:245-256.
    [26] MOHANDAS S,SIDDHARTH R K,JOHN B.Reduction of wave drag on parameterized blunt bodies using spikes with varied tip geometries[J].Acta Astronautica,2019,160:25-35.
    [27] MANSOUR K,KHORSANDI M.The drag reduction in spherical spiked blunt body[J].Acta Astronautica,2014,99:92-98.
    [28] Min OU,YAN Li,HUANG Wei,et al.Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows[J].International Journal of Heat and Mass Transfer,2018,126:10-31.
    [29] 周正贵,王卫星.计算流体力学基础理论与实践[M].北京:科学出版社,2017.
  • 加载中
计量
  • 文章访问数:  96
  • HTML浏览量:  7
  • PDF量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-18
  • 刊出日期:  2022-05-28

目录

    /

    返回文章
    返回