留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同材料发汗冷却结构下氢冷却性能

孙纪国 蔡国飙

孙纪国, 蔡国飙. 不同材料发汗冷却结构下氢冷却性能[J]. 航空动力学报, 2022, 37(4): 781-790. doi: 10.13224/j.cnki.jasp.20210187
引用本文: 孙纪国, 蔡国飙. 不同材料发汗冷却结构下氢冷却性能[J]. 航空动力学报, 2022, 37(4): 781-790. doi: 10.13224/j.cnki.jasp.20210187
SUN Jiguo, CAI Guobiao. Cooling performance of hydrogen for transpiration cooling structure made by different materials[J]. Journal of Aerospace Power, 2022, 37(4): 781-790. doi: 10.13224/j.cnki.jasp.20210187
Citation: SUN Jiguo, CAI Guobiao. Cooling performance of hydrogen for transpiration cooling structure made by different materials[J]. Journal of Aerospace Power, 2022, 37(4): 781-790. doi: 10.13224/j.cnki.jasp.20210187

不同材料发汗冷却结构下氢冷却性能

doi: 10.13224/j.cnki.jasp.20210187
详细信息
    作者简介:

    孙纪国(1966-),男,研究员,博士生,主要研究方向为宇航推进技术。E-mail:sunjg114@sina.com

  • 中图分类号: V231.1

Cooling performance of hydrogen for transpiration cooling structure made by different materials

  • 摘要: 为了实现航空航天等领域高温大热流燃烧装置的有效冷却,研究了不同材料和工艺制成的发汗冷却结构在高温高热流密度下,氢的发汗冷却性能。模拟高压推力室的结构特点和高热流设计发汗冷却试验件,用电弧加热主流空气模拟高温燃气、以氢气为发汗冷却剂对多孔陶瓷、烧结多孔不锈钢和多孔层板材料进行了33次172 s热试验研究。试验的材料设计孔隙率为10%~40%,燃烧室压力为2.7~8.4 MPa,主流燃气温度约为3 600 K,主流空气流量为220~1 490 g/s,冷却氢气流量为9.6~57 g/s,注入率为0.005~0.029。试验结果表明:当冷却剂氢注入率为1%时,主流与多孔陶瓷材料壁面和粉末冶金多孔结构壁面之间的换热分别减少了30%和70%以上;当注入率为3%时,主流与光刻多孔层间结构壁面之间的换热也能降低60%。证明氢发汗冷却可以有效减小壁面与燃气之间的对流热流。最后还总结得出了常温氢气对高压大热流环境进行发汗冷却的性能关联式。

     

  • [1] ECJERT E R G,CHO H H.Transition from transpiration to film cooling[J].International Journal of Heat and Mass Transfer,1994,37(Suppl.1):3-8.
    [2] WANG J H,MESSNER J,STETTER H.An experimental investigation of transpiration cooling:Part Ⅰ an application investigation on infrared measurement technique[J].International Journal of Rotating Machinery,2003,9(3):154-163.
    [3] WANG J H,MESSNER J,STETTER H.An experimental investigation of transpiration cooling:Part Ⅱ comparison of cooling methods and media[J].International Journal of Rotating Machinery,2004,9(10):355-363.
    [4] 林杨,孙冰,郑力铭.层板推力室发汗冷却壁温特性的初步研究[J].航空动力学报,2008,23(5):877-881.
    [5] YANOVSKE L S.Physical basis of transpiration cooling for engines of flying apparatus[M].Moscow,Russia:MAI Press,1996.
    [6] HERMANN T,MCGILVRAY M.Analytical solution of flows in porous media for transpiration cooling applications[J].Journal of Fluid Mechanics,2021,915:1-16.
    [7] HE Fei,WU Nan,ZHOU Zihe,et al.Experimental investigation on transpiration cooling using propylene glycol aqueous solution[J].International Journal of Thermal Sciences,2021,164:106890.1-106890.10.
    [8] CHEN Yu,DU Shen,LI Dong,et al.Numerical investigation of transient phase-change transpiration cooling based on variable properties of coolant[J].Applied Thermal Engineering,2021,184:116204.1-116204.13.
    [9] LANDIS J,BOWMAN W.Numerical study of a transpiration cooled rocket nozzle[R].Lake Buena Vista,Florida,US:the 32nd Joint Propulsion Conference and Exhibit,1996.
    [10] KEENER D,LENERTZ J,BOWERSOX R,et al.Transpiration cooling effects on nozzle heat transfer and performance[J].Journal of Spacecraft and Rockets,1995,32(6):981-985.
    [11] GREUEL D,HERBERTZ A,HAIDN O,et al.Transpiration cooling applied to C/C liners of cryogenic liquid rocket engines[R].Fort Lauderdale,Florida,US:the 40th AIAA/ASME/SAE/ASEE/JPC Conference and Exhibition,2004.
    [12] ZHONG Fengqun,BROWN G.Experimental and numerical studies of multi-hole cooled ceramic matrix composite liners[R].Rena,Nevada,US:the 43rd AIAA Aerospace Sciences Meeting and Exhibit,2005.
    [13] TANG Jie,CHEN Yufeng,SUN Jiguo,et al.Properties and application of oriented porous SiC as transpiration cooling materials[J].Key Engineering Materials,2007,336/337/338:1109-1112.
    [14] TERRY E,CARAS G J,Transpiration and film cooling of liquid rocket nozzles[R].Redstone Scientific Information Center,RSIC-535,1966.
    [15] HAESELER D,MADING C,RUBINSKIY V,et al.Experimental investigation of transpiration cooled hydrogen-oxygen subscale chambers[R].Cleveland,US:the 34th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,1998.
    [16] 王燚,郭章,王桂香.液氢液氧发动机用丝网多孔发汗冷却面板材料[J].宇航材料工艺,1986(5):40-47.
    [17] KAYS M W,CRAWFORD M E.Convective heat and mass transfer[M].3nd ed New York :McGraw-Hill,1993.
    [18] MEINERT J,HUHN J.Turbulent boundary layers with foreign gas transpiration[J].Journal of Spacecraft and Rockets,2001,38(2):191-198.
    [19] WOODRUFF L W,LORENZ G C.Hypersonic turbulent transpiration cooling including downstream effects[J].AIAA Journal,1966,4(6):969-975.
    [20] WHEELER H L,DUWEZ P.Heat transfer through sweat cooled porous tubes[J].Journal of Jet Propulsion,1955,25(10):519-524.
    [21] BERGMAN T L,INCROPERA F P,DEWITT D P,et al.Fundamentals of heat and mass transfer[M].New York,US:John Wiley and Sons,2011.
    [22] LANGENER T,WOLFERSDORF J V,STEE-LANT J.Experimental investigations on transpiration cooling for scramjet applications using different coolants[J].AIAA Journal,2011,49(7):1409-1419.
    [23] DITTUS F W,BOELTER L.Heat transfer in automobile radiators of the tubular type[J].International Communications in Heat and Mass Transfer,1985,12(1):3-22.
    [24] LIU Yuanqing,JIANG Peixun,JIN Shaoshan,et al.Transpiration cooling of a nose cone by various foreign gases[J].International Journal of Heat Mass Transfer,2010,53(23/24):5364-5372.
    [25] 刘元清.发汗冷却基础问题的实验研究和数值模拟[D].北京:清华大学,2010.
    [26] 熊宴斌.超声速主流条件发汗冷却的流动和传热机理研究[D].北京:清华大学,2013.
    [27] LEZUO M,HAIDN O.Transpiration cooling in H2/O2-combustion devices[R].Lake Buena Vista,Florida,US:the 32nd Joint Propulsion Conference and Exhibit,1996.
    [28] ZINNER W,HAESELER D,MAEDING C,et al.Development of advanced technologies for future cryogenic thrust chamber applications[R].Washington,US:the 33rd Joint Propulsion Conference and Exhibit,1997.
    [29] SERBEST E,HAIDN O,GREUEL D,et al.Effusion cooling of throat region in rocket engines :applying fibre reinforced ceramics[R].Salt Lake City,Utah,US:the 37th Joint Propulsion Conference and Exhibit,2001.
    [30] FROEHLKE K,HAIDN O J,SERBEST E.New experimental results on transpiration cooling for hydrogen/oxygen rocket combustion chambers[R].Cleveland,Ohio,US:the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,1998.
    [31] MAY L,BURKHARDT W M.Transpiration cooled throat for hydrocarbon rocket engines[R].National Aeronautics and Space Administration,NASA-CR-184272,1991.
    [32] ZHU Yinhai,JIANG Peixue,SUN Jiguo,et al.Injector head transpiration cooling coupled with combustion in H2/O2 subscale thrust chamber[J].Journal of Thermophysics and Heat Transfer,2013,27(1):42-51.
    [33] 李青,孙纪国.多孔陶瓷氢气发汗冷却特性研究[J].推进技术,2014,10(10):1387-1391.
    [34] CHEN F,BOWMAN W J,BOWERSOX R.Effect of transpiration cooling on nozzle heat transfer[J].Journal of Spacecraft and Rockets,1996,33(3):453-455.
    [35] MOFFAT R J,KAYS M W.The turbulent boundary layer on a porous plate:experimental heat transfer with uniform blowing and suction[J].International Journal of Heat and Mass Transfer,1968,11(10):1547-1566.
    [36] FOGAROLI R P,SAYDAH A R.Turbulent heat transfer and skin friction measurements on a porous cone with air injection[J].AIAA Journal,1966,4(6):1116-1117.
    [37] BARTLE E R,LEADON B M.The effectiveness as a universal measure of mass transfer cooling for a turbulent boundary layer[M].Palo Alto,US:Stanford University Press,1962.
    [38] RANNIE W D.A simplified theory of porous wall cooling[R].Pasadena,California,US:National Aeronautics and Space Administration,1947.
    [39] LAGANELLI L.Comparison between film cooling and transpiration cooling system in high speed flow[R].New York,US:the 8th Aerospace Sciences Meeting,1970.
  • 加载中
计量
  • 文章访问数:  106
  • HTML浏览量:  12
  • PDF量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回