留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机整机性能仿真中的功率平衡方法

徐全勇 吴锋

徐全勇, 吴锋. 航空发动机整机性能仿真中的功率平衡方法[J]. 航空动力学报, 2022, 37(12):2707-2718 doi: 10.13224/j.cnki.jasp.20210194
引用本文: 徐全勇, 吴锋. 航空发动机整机性能仿真中的功率平衡方法[J]. 航空动力学报, 2022, 37(12):2707-2718 doi: 10.13224/j.cnki.jasp.20210194
XU Quanyong, WU Feng. Power balancing method in aero-engine whole-engine performance simulation[J]. Journal of Aerospace Power, 2022, 37(12):2707-2718 doi: 10.13224/j.cnki.jasp.20210194
Citation: XU Quanyong, WU Feng. Power balancing method in aero-engine whole-engine performance simulation[J]. Journal of Aerospace Power, 2022, 37(12):2707-2718 doi: 10.13224/j.cnki.jasp.20210194

航空发动机整机性能仿真中的功率平衡方法

doi: 10.13224/j.cnki.jasp.20210194
基金项目: 国家科技重大专项 (J2019-Ⅴ-0001-0092,J2019-Ⅴ-0013-0108)
详细信息
    作者简介:

    徐全勇(1980-),男,副研究员,博士,主要从事航空发动机气动热力学研究

  • 中图分类号: V235.1

Power balancing method in aero-engine whole-engine performance simulation

  • 摘要:

    提出了一种在CFD三维整机仿真中实现功率平衡的计算方法。推导确定了决定平衡关系的关键变量:涡轮前温度与物理转速。提出了基于稳态流场和功率经验关系实现功率平衡的数值迭代方法。本文将该迭代方法与CFD三维求解耦合,发展了一种可用于三维整机CFD耦合仿真的功率平衡计算方法。采用该功率平衡计算方法对MTJ-80涡喷发动机开展了三维整机CFD数值计算,实现了整机性能三维仿真与控制规律的耦合和预测。在控制燃油量不变的条件下,通过转速迭代可以实现压气机和涡轮的功率差小于0.1%,可以预测固定燃油供给量条件下所能达到的稳态运转转速。在控制转速不变的条件下,通过调节燃油量实现压气机和涡轮的功率差小于0.15%,可以预测固定转速条件下的燃油流量。数据验证结果表明:该功率平很给计算方法可以与CFD三维整机计算耦合,并且具有很强的收敛性,解决了以往整机三维性能仿真过程中的功率不平衡问题。

     

  • 图 1  核心机功率平衡的关键参数

    Figure 1.  Key parameters of power balance of a turbo jet engine

    图 2  功率平衡求解流程图

    Figure 2.  Power balance solution flow chart

    图 3  MTJ-80发动机结构示意图

    1 进口支板; 2 离心叶轮; 3 径向扩压器; 4 轴向扩压器;5 燃烧室; 6 涡轮进口导叶; 7 涡轮转子; 8 出口支板。

    Figure 3.  MTJ-80 engine structure diagram

    图 4  压气机、燃烧室、涡轮计算域壁面网格

    Figure 4.  Wall meshes for the computational domain of the compressor, combustion chamber and turbine

    图 5  压气机、涡轮壁面与燃烧室关键截面静温云图及部件关键交界面处的流场参数

    Figure 5.  Static temperature cloud map of key sections of compressor, turbine wall and combustion chamber as well as flow field parameters at key interfaces of component

    图 6  质量流量和扭矩收敛历史

    Figure 6.  Mass flow and torque convergence history

    图 7  燃油质量流量迭代历史和扭矩偏差量收敛历史

    Figure 7.  Fuel mass flow iteration history and torque deviation convergence history

    图 8  转速迭代历史和扭矩偏差量收敛历史

    Figure 8.  Speed iteration history and torque deviation convergence history

    图 9  功率匹配计算方案对压气机特征叶高保角变化平面相对马赫数分布的影响

    Figure 9.  Influence of power matching calculation scheme on the relative Mach number distribution in the high-angle change plane of the compressor characteristic blade

    图 10  功率匹配计算方案对涡轮特征叶高保角变化平面的相对马赫数分布的影响

    Figure 10.  Influence of power matching calculation scheme on the relative Mach number distribution of the high-angle change plane of turbine characteristic blades

    图 11  功率匹配计算方案对燃烧室温度分布的影响

    Figure 11.  Influence of power matching calculation scheme on combustion chamber temperature distribution

    表  1  发动机关键设计参数及设计点性能

    Table  1.   Key engine design parameters and performance of design points

    参数符号数值
    发动机最大外径/mm${r_{{\text{max}}}}$145
    发动机核心长度/mm${L_{{\text{core}}}}$470
    进口支板数${N_{{\text{IS}}}}$6
    叶轮(分流叶片)
    叶片数
    ${N_{{\text{CI}}}}$10(10)
    径向扩压器叶片数${N_{{\text{RD}}}}$21
    轴向扩压器叶片数${N_{{\text{AD}}}}$42
    燃烧室燃油喷嘴数${N_{{\text{FSN}}}}$12
    涡轮导叶数${N_{{\text{TGV}}}}$16
    涡轮转子叶片数${N_{{\text{TR}}}}$29
    出口支板数${N_{{\text{OS}}}}$4
    换算转速/(r/min)${{n} }$60000
    燃油流量/(kg/s)${\dot m_{{\text{fuel}}}}$0.0336
    油气比${f_{\text{a}}}$0.015628
    下载: 导出CSV

    表  2  各组件网格节点数

    Table  2.   Number of mesh nodes of each component

    组件网格类型节点网格数
    进口支板六面体726516686955
    离心叶轮六面体528583489162
    径向扩压器六面体188428175362
    轴向扩压器六面体9721887822
    燃烧室四面体112826563418
    涡轮导叶六面体176064163701
    涡轮转子六面体312145294048
    出口支板六面体403580378147
    总计25453602838615
    下载: 导出CSV

    表  3  发动机性能参数

    Table  3.   Engine performance parameters

    性能参数数值结果
    压气机总压比${\pi _{\text{c}}}$4.1235
    燃烧室温升${\theta _{\text{4}}}$2.2248
    涡轮前温度${T_{{\text{t4}}}}$/K1060.86
    涡轮总压膨胀比${\pi _{\text{t} } }$2.8256
    油气比(燃油/进口流量)${f_{\text{a}}}$63.815
    非安装推力${F_{{\text{ax}}}}$/kN0.779
    进口质量流量${\dot m_2}$/(kg/s)2.1142
    出口质量流量${\dot m_{\text{9}}}$/(kg/s)2.1789
    压气机扭矩${T_{{\text{qc}}}}$/(${\text{N}} \cdot {\text{m}}$)65.057
    涡轮扭矩${T_{{\text{qt}}}}$/(${\text{N}} \cdot {\text{m}}$)71.723
    下载: 导出CSV

    表  4  方案 (12a) 不同迭代因子对流量迭代功率平衡计算的影响

    Table  4.   Scheme (12a) influence of different iteration factors on flow iteration power balance calculation for

    算例${\dot m_{{\text{fuel}}}}$/
    (kg/s)
    $ {\dot m_2} $/
    (kg/s)
    ${e_{{\text{mass}}}}$/
    %
    ${e_{{\text{torque}}}}$/
    %
    ${\pi _{\text{c}}}$${\theta _{\text{4}}}$${T_{{\text{t4}}}}$/K${\pi _{\text{t}}}$${F_{{\text{ax}}}}$/kN结果状态
    Test_a2 ($\lambda = {\text{1}}{\text{.0}}$)0.02632.1470.033−0.123.891.98937.02.8190.642收敛
    Test_a3 ($\lambda = {\text{5}}{\text{.0}}$)0.02622.1470.0310.0023.891.98936.42.8310.635收敛
    Test_a4 ($\lambda = {\text{8}}{\text{.0}}$)0.02062.1495.31523.583.591.75819.72.6390.460发散
    下载: 导出CSV

    表  5  方案12(b)不同迭代因子对流量迭代功率平衡计算的影响

    Table  5.   Scheme (12b) Influence of different iteration factors on flow iteration power balance calculation

    算例n/ (r/min)$ {\dot m_2} $/ (kg/s)${e_{{\text{mass}}}}$/%${e_{{\text{torque}}}}$/%${\pi _{\text{c}}}$${\theta _{\text{4}}}$${T_{{\text{t4}}}}$/K${\pi _{\text{t}}}$${F_{{\text{ax}}}}$/kN结果状态
    Test_b2 ($\lambda {\text{ = 0}}{\text{.5}}$)643252.1920.1050.084.252.141067.02.8630.808收敛
    Test_b3 ($\lambda {\text{ = 1}}{\text{.0}}$)642832.1920.0050.014.252.141065.02.8650.807收敛
    Test_b4 ($\lambda {\text{ = 1}}{\text{.2}}$)651532.1990.0322.174.272.131074.42.8850.797未收敛
    下载: 导出CSV
  • [1] 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术,2018,39(5): 961-970. CAO Jianguo. Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology,2018,39(5): 961-970. (in Chinese doi: 10.13675/j.cnki.tjjs.2018.05.001
    [2] TURNER M,NORRIS A,VERES J. High fidelity 3D simulation of the GE90[C]//33rd AIAA Fluid Dynamics Conference and Exhibit. Orlando,US:AIAA,2003:1-13.
    [3] TURNER M,REED J,RYDER R,et al. Multi-fidelity simulation of a turbofan engine with results zoomed into mini-maps for a zero-d cycle simulation[C]//ASME Turbo Expo 2004. Vienna:American Society of Mechanical Engineers. 2004:219-230.
    [4] TURNER M. Lessons learned from the GE90 3-D full engine simulations[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando,US:AIAA,2010:1-16.
    [5] SCHLUTER J,WU X,VAN DER WEIDE E,et al. Integrated LES-RANS of an entire high-spool of a gas turbine[C]//44th AIAA Aer deospace Sciences Meeting and Exhibit. Reno,US:AIAA,2006:1-11.
    [6] MEDIC G,KALITZIN G,YOU D,et al. Integrated RANS/LES computations of an entire gas turbine jet engine[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno,US:AIAA,2007:1-8.
    [7] WANG F. Whole aero-engine meshing and CFD simulation[D]. London,England:Imperial College London,2013.
    [8] KRIVCOV A V,SHABLIY L S,BATURIN O V. Gas-dynamic modeling of gas turbine engine components collaborative workflow[J]. Open Mechanical Engineering Journal,2014,8(1): 445-449. doi: 10.2174/1874155X01408010445
    [9] TEIXEIRA M,ROMAGNOSI L,MEZINE M,et al. A methodology for fully-coupled CFD engine simulations,applied to a micro gas turbine engine[C]//ASME Turbo Expo 2018. Oslo:American Society of Mechanical Engineers,2018:1-10.
    [10] PÉREZ ARROYO C,DOMBARD J,DUCHAINE F,et al. Large-eddy simulation of an integrated high-pressure compressor and combustion chamber of a typical turbine engine architecture[R]. ASME Paper GT2020-16288,2020.
    [11] 张剑,卫刚,黄维娜. 航空发动机核心机全三维数值仿真方法研究[J]. 燃气涡轮试验与研究,2020,33(1): 1-5. ZHANG Jian,WEI Gang,HUANG Weina. Three-dimensional simulation of a core engine[J]. Gas Turbine Experiment and Research,2020,33(1): 1-5. (in Chinese doi: 10.3969/j.issn.1672-2620.2020.01.001
    [12] 于龙江. 航空发动机整机性能计算及内流场仿真方法研究[D]. 北京:清华大学,2019.

    YU Longjiang. Research on the performance calculation and internal flow simulation methods of aero engines [D]. Beijing:Tsing Unvisity,2019.(in Chinese)
    [13] WESTBROOK C K,DRYER F L. Chemical kinetic modeling of hydrocarbon combustion[J]. Progress in Energy & Combustion Science,1984,10(1): 1-57.
    [14] ZHANG R,XU Q,FAN W. Effect of swirl field on the fuel concentration distribution and combustion characteristics in gas turbine combustor with cavity[J]. Energy,2018,162: 83-98. doi: 10.1016/j.energy.2018.07.170
    [15] XIE Z F,XU Q Y,GUAN N X,et al. A new closed-form method for inertia force and moment calculation in reciprocating piston engine design[J]. Science China Technological Sciences,2018,61(6): 879-885. doi: 10.1007/s11431-017-9184-x
    [16] ZHU H,WU F,XU Q,et al. Direct numerical simulation of turbine cascade flow with heat transfer[J]. International Journal of Turbo & Jet-Engines,2019,36(4): 445-456.
    [17] CHEN Z,ZHOU M,XU Q,et al. A novel quasi-3D method for cascade flow considering axial velocity density ratio[J]. International Journal of Turbo & Jet-Engines,2018,35(1): 81-94.
    [18] TUCKER P G. Coupled computational aerodynamics[M]. Dordrecht,Netherlands: Springer,2014.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  370
  • HTML浏览量:  172
  • PDF量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 网络出版日期:  2022-09-05

目录

    /

    返回文章
    返回