留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

附面层吸入式进气道内流动损失特性

邓文剑 王占学 周莉 赵海宇

邓文剑, 王占学, 周莉, 等. 附面层吸入式进气道内流动损失特性[J]. 航空动力学报, 2023, 38(3):698-708 doi: 10.13224/j.cnki.jasp.20210205
引用本文: 邓文剑, 王占学, 周莉, 等. 附面层吸入式进气道内流动损失特性[J]. 航空动力学报, 2023, 38(3):698-708 doi: 10.13224/j.cnki.jasp.20210205
DENG Wenjian, WANG Zhanxue, ZHOU Li, et al. Flow losses characteristics of BLI inlet[J]. Journal of Aerospace Power, 2023, 38(3):698-708 doi: 10.13224/j.cnki.jasp.20210205
Citation: DENG Wenjian, WANG Zhanxue, ZHOU Li, et al. Flow losses characteristics of BLI inlet[J]. Journal of Aerospace Power, 2023, 38(3):698-708 doi: 10.13224/j.cnki.jasp.20210205

附面层吸入式进气道内流动损失特性

doi: 10.13224/j.cnki.jasp.20210205
基金项目: 工信部某前瞻性技术研究项目
详细信息
    作者简介:

    邓文剑(1980-),男,副研究员,博士,主要研究方向为新型推进技术、进排气系统、飞发一体化

    通讯作者:

    王占学(1969-),男,教授、博士生导师,博士,主要研究方向为新型推进技术与发动机总体性能。E-mail: wangzx@nwpu.edu.cn

  • 中图分类号: V231.3

Flow losses characteristics of BLI inlet

  • 摘要:

    用数值仿真手段,对进气道内流总压损失采用逐段对比分析的方法,研究了附面层吸入式(BLI)进气道相对于常规S弯进气道的内流总压损失特性。结果表明:进气道出口马赫数不变,较低来流马赫数和较高来流马赫数工况下(方案对应马赫数0.3以下和马赫数0.6以上),BLI进气道产生的流动损失比常规S弯进气道的大,差量达2.4%;中等来流马赫数工况下(本文方案对应马赫数0.3与马赫数0.6之间),BLI进气道产生的流动损失比常规S弯进气道的略小,差量在0.3%以内;流动损失特性间的差异是由于BLI进气道进口前壁面与进口低能附面流改变了进口段流动特性、及在S弯管道内发展的综合作用结果。

     

  • 图 1  BLI进气道典型结构图

    Figure 1.  Typical structure of BLI inlet

    图 2  唇口剖面型线

    Figure 2.  Profile of lip section

    图 3  进气道几何构型

    Figure 3.  Geometry of inlet

    图 4  BLI进气道局部网格

    Figure 4.  Local mesh of BLI inlet

    图 5  参考进气道模型和网格

    Figure 5.  Geometry and mesh of reference inlet

    图 6  仿真计算结果对比

    Figure 6.  Comparision of simulation result

    图 7  进气道总压恢复性能曲线图

    Figure 7.  Total pressure recover coefficient of inlet

    图 8  进气道对称剖面上的总压恢复系数云图

    Figure 8.  Contour of total pressure recover coefficient in symmetry plane of inlet

    图 9  进气道入口前截面位置

    Figure 9.  Location of inlet entrance front section

    图 10  不同来流马赫数入口前截面相对总压降曲线

    Figure 10.  Relative total pressure drop at inlet front plane with different incoming Mach number

    图 11  BLI进气道入口前截面总压恢复系数云图

    Figure 11.  Contour of total pressure recover coefficient at the highlight plane of BLI S-shaped inlet

    图 12  不同来流马赫数进气道内相对总压降曲线图

    Figure 12.  Relative total pressure drop in inlet with different incoming Mach number

    图 13  进气道喉道面

    Figure 13.  Throat plane of inlet

    图 14  进气道进口段相对总压降

    Figure 14.  Relative total pressure drop in entrance region of inlet

    图 15  进气道上唇口、侧唇口和下唇口位置

    Figure 15.  Location of inlet upper lip, side lip, and lower lip

    图 16  $M{a_\infty } = 0.1$时BLI进气道与S弯进气道唇口流线分布

    Figure 16.  Streamline around the lip of BLI and S-shaped inlet at $M{a_\infty } = 0.1$

    图 17  $M{a_\infty } = 0.4$时BLI进气道与S弯进气道唇口流线分布

    Figure 17.  Streamline around the lip of BLI and S-shaped inlet at $M{a_\infty } = 0.4$

    图 18  $M{a_\infty } = 0.8$时BLI进气道与S弯进气道唇口流线分布

    Figure 18.  Streamline around the lip of BLI and S-shaped inlet at $M{a_\infty } = 0.8$

    图 19  进气道进口截面和喉道截面上总压恢复云图($M{a_\infty } = 0.4$

    Figure 19.  Contour of total pressure recover coefficient at entrance section and throat section of inlet ($M{a_\infty } = 0.4$

    图 20  进气道内管道相对总压降

    Figure 20.  Relative total pressure drop in inlet diffuser

    图 21  进气道壁面流线及扩压段进出口总压分布云图

    Figure 21.  Wall streamline of inlet and contour of total pressure at entrance and exit section of diffuser

    表  1  网格无关性计算结果($M{a_\infty } = 0.4$

    Table  1.   Results of mesh independent calculation ($M{{{a}}_\infty } = 0.4$

    网格数量/104进气道出口总压恢复系数
    4360.9796
    6720.9733
    8250.9715
    10780.9712
    下载: 导出CSV
  • [1] 林鹏,左林玄,王霄,等. 未来作战飞机飞发一体化技术的思考[J]. 航空动力,2018(2): 52-57.

    LIN Peng,ZUO Linxuan,WANG Xiao,et al. Discussion on aircraft/engine integration technology of future combat aircraft[J]. Aerospace Power,2018(2): 52-57. (in Chinese)
    [2] 梁彩云,谢业平,李泳凡,等. 飞/发性能一体化技术在航空发动机设计中的应用[J]. 航空发动机,2015,41(3): 1-5.

    LIANG Caiyun,XIE Yeping,LI Yongfan,et al. Application of integrated aircraft/engine technology in aeroengine designing[J]. Aeroengine,2015,41(3): 1-5. (in Chinese)
    [3] GOLDBERG C, NALIANDA D, PILIDIS P, et al. Installed performance assessment of a boundary layer ingesting distributed propulsion system at design point[R]. AIAA 2016-4800, 2016.
    [4] GOLDBERG C, NALIANDA D, PILIDIS P, et al. Performance assessment of a boundary layer ingesting distributed propulsion system at off-design[R]. AIAA 2017-5055, 2017
    [5] 高为民. 飞发一体化设计的关键技术[J]. 航空动力,2018(2): 58-62.

    GAO Weimin. Key technology for aircraft/engine integration design[J]. Aerospace Power,2018(2): 58-62. (in Chinese)
    [6] 陈逖, 邱名, 江雄. 附面层吸入式推进系统研究进展[C]//2017年(第三届)中国航空科学技术大会论文集. 北京: 中国空气动力研究与发展中心计算空气动力研究所, 2017: 22-32.
    [7] OCHS S S, ILLMAN G, JOO J, et al. CFD-based analysis of boundary layer ingesting propulsion[R]. AIAA 2015-3800, 2015.
    [8] SMITH L H. Wakeingestion propulsion benefit[J]. Journal of Propulsion and Power,1993,9(1): 74-82. doi: 10.2514/3.11487
    [9] SMITH A,ROBERTS H E. The jet airplane utilizing boundary layer air for propulsion[J]. Journal of the Aeronautical Sciences,1947,14(2): 97-109. doi: 10.2514/8.1273
    [10] LIEBECK R H, PAGE M A, RAWDON B K. Blended-wing-body subsonic commercial transport[R]. AIAA 1998-0438, 1998.
    [11] DAGGET D L, KAWAI R, FRIEDMAN D. Blended wing body systems studies: boundary layer ingestion inlet swith active flow control[R]. NASA/CR-203-2126-70, 2004.
    [12] LEE B J, KUMANO T, LIOU M S. Design explaration for vortex genarators for boundary-layer-ingesting inlet[R]. AIAA 2010-9399, 2010.
    [13] FLOREA R V, MATALANIS C, HARDIN L W, et al. Parametric analysis and design for embedded engine inlets[R]. AIAA 2012-3994, 2012.
    [14] BERRIER B L, CARTER M B. High Reynolds number investigation of a flush-mounted S-duct inlet with large amounts of boundary layer ingestion[R]. NASA/TP-2005-213766, 2005.
    [15] ANABTAWA A J, BLACKWELDER R F, LISSAMAN P B S. An experimental investigation of boundary layer ingestion in a diffusing S-duct with and without passive flow control[R]. AIAA 1999-0739, 1999.
    [16] LEE B J, KUMANO T, LIOU M S. Design exploration for vortex generators for boundary-layer-ingesting inlet[R]. AIAA 2010-9399, 2010.
    [17] 宁乐. BLI进气道流动特性的地面模拟方法和初步试验研究[D]. 南京: 南京航空航天大学, 2016.

    NING Le. Ground-based simulation method for the flow characteristics of BLI inlet and preliminary experiment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [18] 达兴亚,范召林,熊能,等. 分布式边界吸入推进系统的建模与分析[J]. 航空学报,2018,39(7): 113-121.

    DA Xingya,FAN Zhaolin,XIONG Neng,et al. Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. Acta Aeronautica et Astronautica Sinica,2018,39(7): 113-121. (in Chinese)
    [19] 陈建华. 附面层吸入式进气道主动流动控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    CHEN Jianhua. Investigation of active flow control in a boundary layer ingesting offset inlet[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
    [20] 桑振坤. 半埋入式S弯进气道优化设计及主动流动控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    SANG Zhenkun. Optimal design and active flow control of half flush-mounted S-duck inlet[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
    [21] GRAY J S. Design optimization of a Boundary Layer Ingestion propulsor using a coupled aeropropulsive model[D]. Michigan, US: University of Michigan, 2018.
    [22] KIM H J, LIOU M S. Optimal inlet shape design of N2B hybrid wing body configuration[R]. AIAA 2012-3917, 2012
    [23] ALLAN B, OWENS L, LIN J. Optimal design of passive flow control for a boundary-layer-ingesting offset inlet using design-of-experiments[R]. AIAA 2006-1049, 2006
    [24] 赵鹤书, 潘杰元. 飞机进气道气动原理[M]. 北京: 国防工业出版社, 1989.
    [25] 姜正行. 飞机内流空气动力学[M]. 北京: 航空工业出版社, 1989.
    [26] 周慧晨,谭慧俊,李湘萍. 复杂变截面进气道的一种设计方法[J]. 航空动力学报,2009,24(6): 1357-1363.

    ZHOU Huichen,TAN Huijun,LI Xiangping. Unique design method of subsonic inlet with complex cross-sectional shape[J]. Journal of Aerospace Power,2009,24(6): 1357-1363. (in Chinese)
    [27] 潘俊杰. S形进气道内流场特性及流动控制研究[D]. 南京: 南京航空航天大学, 2014.

    PAN Junjie. Research on the flow field characteristics and flow control of S-shaped inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
    [28] HIRSCHEL E H, RIZZI A, BREITSAMTER C, et al. Separated and vortical flow in aircraft wing aerodynamics[M]. Berlin: Springer, 2021.
    [29] 吴国钊. 附面层理论[M]. 北京: 航空工业出版社, 1989.
    [30] NICHOLS D A, VUKASINOVIC B, GLEZER A. Characterization and control of nacelle inlet flow in crosswind[R]. AIAA 2019-3685, 2019.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  381
  • HTML浏览量:  39
  • PDF量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 网络出版日期:  2023-02-06

目录

    /

    返回文章
    返回