留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涂层材料瞬态传热实验与导热系数辨识

陈学 卢国鹏 孙创 夏新林 王秦阳 康宏琳

陈学, 卢国鹏, 孙创, 等. 涂层材料瞬态传热实验与导热系数辨识[J]. 航空动力学报, 2023, 38(4):777-786 doi: 10.13224/j.cnki.jasp.20210208
引用本文: 陈学, 卢国鹏, 孙创, 等. 涂层材料瞬态传热实验与导热系数辨识[J]. 航空动力学报, 2023, 38(4):777-786 doi: 10.13224/j.cnki.jasp.20210208
CHEN Xue, LU Guopeng, SUN Chuang, et al. Transient heat transfer experiment and thermal conductivity identification of coating materials[J]. Journal of Aerospace Power, 2023, 38(4):777-786 doi: 10.13224/j.cnki.jasp.20210208
Citation: CHEN Xue, LU Guopeng, SUN Chuang, et al. Transient heat transfer experiment and thermal conductivity identification of coating materials[J]. Journal of Aerospace Power, 2023, 38(4):777-786 doi: 10.13224/j.cnki.jasp.20210208

涂层材料瞬态传热实验与导热系数辨识

doi: 10.13224/j.cnki.jasp.20210208
基金项目: 国家自然科学基金(51806046); 中国博士后科学基金(2020T130145)
详细信息
    作者简介:

    陈学(1985-),男,讲师、硕士生导师,博士,研究方向为涂层传热特性、红外辐射传输

    通讯作者:

    夏新林(1966-),男,教授、博士生导师,博士,研究方向为高温能量转换、耦合热传递。E-mail:xiaxl@hit.edu.cn

  • 中图分类号: V219;TK124

Transient heat transfer experiment and thermal conductivity identification of coating materials

  • 摘要:

    针对涂层‒基体一体化的双层结构,为测试评估其中涂层材料的导热性能,提出基于瞬态平面热源法(transient plane source, TPS)的涂层材料导热系数反演辨识方法。根据Hot-Disk实验测试原理,建立基体‒涂层‒探头整体的二维非稳态传热模型;结合测量过程中的瞬时温升数据信息,采用粒子群优化算法反演辨识获得涂层材料的导热系数;并通过实验和数值模拟论证了上述方法的可靠性。结果表明:该测量方法能够有效获得涂层导热系数,测试反演的数值偏差小于4.0%。最后,实际测量和反演辨识获得了一种涂层材料常温至773 K的导热系数,随温度提高呈现增大趋势,数值范围为0.18~0.29 W/(m·K)。

     

  • 图 1  Hot-Disk测试装置

    Figure 1.  Schematic diagram of the Hot-Disk test setup

    图 2  实验测试端简化物理模型

    Figure 2.  Physical model of the experimental testing part

    图 3  导热系数反演辨识流程图

    Figure 3.  Flow chart of the inverse identification process for the thermal conductivity.

    图 4  模拟涂层‒基体双层结构的实验测试

    Figure 4.  Experimental test of the simulated coating-substrate double-layer structure

    图 5  探头温升数值模拟与实验结果比较

    Figure 5.  Comparison between numerical and experimental results of the probe temperature rise

    图 6  不同加热功率下反演结果

    Figure 6.  Identified results under different heating powers

    图 7  不同情况下探头温升曲线

    Figure 7.  Probe temperature rise curve under different conditions

    图 8  双层结构时不同情况下探头温升曲线

    Figure 8.  Probe temperature rise curve under different conditions for double-layer structure

    图 9  双层结构时反演模型验证比较

    Figure 9.  Validation of the inversion model for double-layer structure

    图 10  不同涂层导热系数情况下探头温升曲线图

    Figure 10.  Probe temperature rise curve under different thermal conductivity conditions for the coating

    图 11  涂层不同导热系数下反演模型相对偏差

    Figure 11.  Relative deviation of inversion model under different thermal conductivities of coating

    图 12  涂层不同厚度情况下探头温升曲线图

    Figure 12.  Probe temperature rise curve under different coating thickness

    图 13  涂层不同厚度下反演模型相对偏差

    Figure 13.  Relative deviation of inversion model under different coating thicknesses

    图 14  高温测量用的云母探头

    Figure 14.  Mica probe for high-temperature test

    图 15  高温测试时样品安装示意图

    Figure 15.  Installation layout of sample at high-temperature test

    图 16  一种隔热涂层‒基体双层结构不同测试温度下探头温升曲线

    Figure 16.  Probe temperature rise curve under different temperatures for an insulation coating-substrate double-layer structure

    表  1  隔热涂层材料在不同温度下的导热系数

    Table  1.   Thermal conductivity of the insulation coating at different temperatures

    Tamb/Kλ/(W/(m·K))均值
    P1P2P3
    3000.1840.1790.1800.181
    3730.2100.2030.2050.206
    4730.2190.2040.2120.217
    5730.2410.2350.2250.225
    7130.2480.2450.2320.242
    7730.2920.2850.2890.292
    下载: 导出CSV
  • [1] 王志平,费宇杰,刘延宽. 热障涂层失效机理、改进方法及未来发展方向[J]. 表面技术,2021,50(7): 126-137.

    WANG Zhiping,FEI Yujie,LIU Yankuan. Failure mechanism, improvement method and future development direction of thermal barrier coatings[J]. Surface Technology,2021,50(7): 126-137. (in Chinese)
    [2] 王利平,张靖周,姚玉. 敷设热障涂层气冷叶片温度分布数值研究[J]. 航空动力学报,2012,27(2): 357-364.

    WANG Liping,ZHANG Jingzhou,YAO Yu. Numerical investigation on temperature distribution of an air-cooled and thermal barrier coating blade[J]. Journal of Aerospace Power,2012,27(2): 357-364. (in Chinese)
    [3] 付伟,黄国胜,程旭东,等. NiAl/NiCoCrAlY/8YSZ复合喷涂层的微观结构与性能研究[J]. 表面技术,2019,48(4): 61-67.

    FU Wei,HUANG Guosheng,CHENG Xudong,et al. Microstructure and properties of NiAl/NiCoCrAlY/8YSZ composite coatings[J]. Surface Technology,2019,48(4): 61-67. (in Chinese)
    [4] 周雳, 邢志国, 王海斗, 等. 等离子喷涂金属/陶瓷梯度热障涂层研究进展[J]. 表面技术, 2020, 49(1): 122-131.

    ZHOU Li, XING Zhiguo, WANG Haidou, et al. Research progress of metal/ceramic gradient thermal barrier coatings by plasma spraying[J]. Surface Technology, 2020, 49(1): 122-131. (in Chinese)
    [5] 王莉莉,王伟,谭世磊,等. 热障涂层制备方法的研究[J]. 热加工工艺,2016,45(18): 15-18.

    WANG Lili,WANG Wei,TAN Shilei,et al. Research on preparation methods of thermal barrier coatings[J]. Hot Working Technology,2016,45(18): 15-18. (in Chinese)
    [6] 张建生,杨君友,朱文,等. 薄膜热导率测试方法研究进展[J]. 材料导报,2010,24(7): 103-107.

    ZHANG Jiansheng,YANG Junyou,ZHU Wen,et al. Research advances in the measurement for the thermal conductivity of thin solid films[J]. Materials Reports,2010,24(7): 103-107. (in Chinese)
    [7] ZHANG H,LI Y M,TAO W Q. Theoretical accuracy of anisotropic thermal conductivity determined by transient plane source method[J]. International Journal of Heat and Mass Transfer,2017,108: 1634-1644. doi: 10.1016/j.ijheatmasstransfer.2017.01.025
    [8] AI Q,HU Z W,WU L L,et al. A single-sided method based on transient plane source technique for thermal conductivity measurement of liquids[J]. International Journal of Heat and Mass Transfer,2017,109: 1181-1190. doi: 10.1016/j.ijheatmasstransfer.2017.03.008
    [9] SOLÓRZANO E,REGLERO J A,RODRÍGUEZ-PÉREZ M A,et al. An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method[J]. International Journal of Heat and Mass Transfer,2008,51(25/26): 6259-6267.
    [10] DAOUAS N,FGUIRI A,RADHOUANI M S. Solution of a coupled inverse heat conduction-radiation problem for the study of radiation effects on the transient hot wire measurements[J]. Experimental Thermal and Fluid Science,2008,32(8): 1766-1778. doi: 10.1016/j.expthermflusci.2008.04.003
    [11] GUSTAFSSON S E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurement of solid materials[J]. Review of Scientific Instruments,1991,62(3): 797-804. doi: 10.1063/1.1142087
    [12] HE Y. Rapid thermal conductivity measurement with a hot disk sensor: Part 1 theoretical considerations[J]. Thermochimica Acta,2005,436(1/2): 122-129.
    [13] HE Y. Rapid thermal conductivity measurement with a hot disk sensor: Part 2 characterization of thermal greases[J]. Thermochimica Acta,2005,436(1/2): 130-134. doi: 10.1016/j.tca.2005.07.003
    [14] MIHIRETIE B M,CEDERKRANTZ D,ROSÉN A,et al. Finite element modeling of the hot disc method[J]. International Journal of Heat and Mass Transfer,2017,115: 216-223. doi: 10.1016/j.ijheatmasstransfer.2017.08.036
    [15] GUSTAVSSON J S,GUSTAVSSON M K,USTAFSSON S E. On the use of the hot disk thermal constants analyser for measuring the thermal conductivity of thin samples of electrically insulating materials[J]. Thermal Conductivity,1997,62(3): 116-122.
    [16] ZHANG H,LI M J,FANG W Z,et al. A numerical study on the theoretical accuracy of film thermal conductivity using transient plane source method[J]. Applied Thermal Engineering,2014,72(1): 62-69. doi: 10.1016/j.applthermaleng.2014.01.058
    [17] KERR L,PAN Y,DINWIDDIE R,et al. Thermal conductivity of coated paper[J]. International Journal of Thermophysics,2009,30(2): 572-579. doi: 10.1007/s10765-009-0565-7
    [18] ALIFANOV O M. Inverse heat transfer problems[M]. Berlin: Springer-Verlag, 1994.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  263
  • HTML浏览量:  47
  • PDF量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-29
  • 网络出版日期:  2023-02-10

目录

    /

    返回文章
    返回