留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桨扇后掠降噪规律及声学机理数值研究

贺象 赵振国 舒太波 彭学敏

贺象, 赵振国, 舒太波, 等. 桨扇后掠降噪规律及声学机理数值研究[J]. 航空动力学报, 2023, 38(4):939-948 doi: 10.13224/j.cnki.jasp.20210214
引用本文: 贺象, 赵振国, 舒太波, 等. 桨扇后掠降噪规律及声学机理数值研究[J]. 航空动力学报, 2023, 38(4):939-948 doi: 10.13224/j.cnki.jasp.20210214
HE Xiang, ZHAO Zhenguo, SHU Taibo, et al. Numerical investigation of noise reduction law and acoustic mecha-nism of the sweepback propfan[J]. Journal of Aerospace Power, 2023, 38(4):939-948 doi: 10.13224/j.cnki.jasp.20210214
Citation: HE Xiang, ZHAO Zhenguo, SHU Taibo, et al. Numerical investigation of noise reduction law and acoustic mecha-nism of the sweepback propfan[J]. Journal of Aerospace Power, 2023, 38(4):939-948 doi: 10.13224/j.cnki.jasp.20210214

桨扇后掠降噪规律及声学机理数值研究

doi: 10.13224/j.cnki.jasp.20210214
基金项目: 湖南创新型省份建设专项经费(2020RC3096)
详细信息
    作者简介:

    贺象(1984-),男,高级工程师,博士,主要从事叶轮机械气动热力学研究。E-mail:41213014@qq.com

  • 中图分类号: V215.3

Numerical investigation of noise reduction law and acoustic mecha-nism of the sweepback propfan

  • 摘要:

    结合三维流场数值模拟方法和声学Ffowcs Williams-Hawkings方程声类比方法,对对转桨扇流动及声学特征进行仿真分析,研究了桨叶后掠角对对转桨扇的气动性能和气动噪声的影响规律。结果表明:对转桨扇桨叶后掠角从0°增加至40°,高速巡航状态推进效率可提高接近1.5个百分点,起飞状态推进效率提升不大;桨扇噪声大小与后排桨叶吸力面压力脉动强度有直接关系,增大桨扇桨叶后掠角可明显降低压力脉动强度,从而降低起飞状态下对转桨扇整个角向范围内的噪声大小;在噪声最大的75°角向位置,后掠角从0°增至40°声压级降低达3 dB以上。

     

  • 图 1  对转桨扇模型

    Figure 1.  Contra rotating propfan model

    图 2  计算网格及边界条件[21]

    Figure 2.  Computational mesh and boundary conditions[21]

    图 3  虚拟麦克风布置

    Figure 3.  Layout of the virtual microphones

    图 4  桨扇巡航和起飞状态性能

    Figure 4.  Propfan performance at cruise and take-off conditions

    图 5  巡航状态下前桨95%叶高马赫数分布

    Figure 5.  Mach number distributions of front blade at 95% span at cruise condition

    图 6  巡航状态下50%叶高马赫数分布

    Figure 6.  Mach number distributions at 50% span at cruise condition

    图 7  起飞状态下50%叶高马赫数分布

    Figure 7.  Mach number distributions at 50% span at take-off condition

    图 8  起飞状态下95%叶高前桨马赫数分布

    Figure 8.  Mach number distributions of front blade at 95% span at take-off condition

    图 9  起飞状态下95%叶高后桨马赫数分布

    Figure 9.  Mach number distributions of rear blade at 95% span at take-off condition

    图 10  起飞状态桨叶表面静压的1阶谐波

    Figure 10.  The 1st harmonic pressure distributions of blade surface at take-off condition

    图 11  起飞状态后桨吸力面静压的1阶谐波

    Figure 11.  The 1st harmonic pressure distributions of rear blade suction-surface at take-off condition

    图 12  起飞状态后桨吸力面静压的2阶谐波

    Figure 12.  The 2nd harmonic pressure distributions of rear blade suction-surface at take-off condition

    图 13  起飞状态后桨吸力面静压的3阶谐波

    Figure 13.  The 3rd harmonic pressure distributions of rear blade suction-surface at take-off condition

    图 14  对转桨扇噪声频谱(后掠角30°)

    Figure 14.  Noise spectrum of the propfan (backward sweep angle 30°)

    图 15  对转桨扇声压级指向性(sweep30)

    Figure 15.  Sound pressure level directivity of the propfan (sweep30)

    图 16  不同后掠角下对转桨扇声压级指向性

    Figure 16.  Sound pressure level directivity of the propfan with different backward sweep angle

    图 17  不同后掠角下70°角向位置桨扇噪声频谱对比

    Figure 17.  Noise spectrum of the propfan with different backward sweep angle at 70° angular position

    图 18  不同后掠角下桨扇桨叶通过频率的声压级指向性

    Figure 18.  Sound pressure level directivity of the propfan blade passing frequency with different backward sweep angle

    图 19  不同后掠角下前后桨干涉声压级指向性

    Figure 19.  Interference sound pressure level directivity of the propfan with different backward sweep angle

    图 20  不同后掠角下160°角向位置桨扇噪声频谱

    Figure 20.  Noise spectrum of the propfan with different backward sweep angle at 160° angular position

    图 21  不同后掠角下30°角向位置桨扇噪声频谱

    Figure 21.  Noise spectrum of the propfan with different backward sweep angle at 30° angular position

    图 22  不同后掠角下前后桨干涉声压级指向性

    Figure 22.  Interference sound pressure level directivity of the propfan with different backward sweep angle

    表  1  网格数分布

    Table  1.   Mesh distributions

    位置网格数/104
    前排桨46
    后排桨46
    远场112
    下载: 导出CSV
  • [1] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学, 2006.
    [2] 严成忠. 开式转子发动机[M]. 北京: 航空工业出版社, 2016.
    [3] 陈博,贺象. 国外桨扇技术发展概况[J]. 燃气涡轮试验与研究,2020,33(1): 54-58. doi: 10.3969/j.issn.1672-2620.2020.01.010

    CHEN Bo,HE Xiang. Development of the propfan technology abroad[J]. Gas Turbine Experiment and Research,2020,33(1): 54-58. (in Chinese) doi: 10.3969/j.issn.1672-2620.2020.01.010
    [4] WAINAUSKI H S, VACZY C M. Aerodynamic performance of a counter rotating prop-fan[R]. AIAA-86-1550, 1986.
    [5] HANNIGAN T E, WAINAUSKI H S. Wind tunnel results of counter rotation prop-fans designed with lifting line and euler code methods[R]. AIAA-91-2499, 1991.
    [6] VAN ZANTE D E. Progress in open rotor research[R]. ASME Paper GT2015-42203, 2015.
    [7] NEGULESCU C A. Airbus AI-PX7 cror design features and aerodynamics[J]. SAE International Journal of Aerospace,2013,6(2): 626-642. doi: 10.4271/2013-01-2245
    [8] CHAPMAN D C, FLEURY R E, SMITH D E. Testing of the 578-DX propfan propulsion system[R]. AIAA-89-2581, 1989.
    [9] GE Aircraft Engines, GE36 Project Department. Full scale technology demonstration of a modern counter rotating unducted fan engine concept: design report[R]. NASA-CR-180867, 1987.
    [10] GE Aircraft Engines, GE36 Project Department. Full scale technology demonstration of a modern counter rotating unducted fan engine concept: component test[R]. NASA-CR-180868, 1987.
    [11] GE Aircraft Engines, GE36 Project Department. Full scale technology demonstration of a modern counter rotating unducted fan engine concept: engine test[R]. NASA-CR-180869, 1987.
    [12] 刘红霞,梁春华. 开式转子发动机研制与进展[J]. 国际航空,2010(4): 75-77.

    LIU Hongxia,LIANG Chunhua. Development and progress of open-rotor engine[J]. International Aviation,2010(4): 75-77. (in Chinese)
    [13] BÉCHE S, NEGULESCU C A, CHAPIN V, et al. Integration of CFD tools in aerodynamic design of contra-rotating propeller blades[R]. Venise, Italy: 3rd Council of European Aero-space Societies Conference, 2011.
    [14] BOISARD R, DELATTRE G. HPC capabilities of the elsA CFD software applied to a counter rotating open rotor test rig[R]. AIAA 2012-2777, 2012.
    [15] STUERMER A, AKKWEMANS R A D. Validation of aerodynamic and aeroacousitc simulations of contra-rotating open rotors at low-speed flight conditions[R]. AIAA 2014-3133, 2014.
    [16] KHALID S, WOJNO J P, STRINGFELLOW A B, et al. Open rotor designs for low noise and high efficiency[R]. ASME Paper GT2013-94736, 2013.
    [17] GUYNN M D, BERTON J J. Performance and environmental assessment of an advanced aircraft with open rotor propulsion[R]. NASA/TM-2012-217772, 2012.
    [18] BRAILKO I A, MILESHIN V I, NYUKHTIKOV M A, et al. Computational and experimental investigation of unsteady and acoustic characteristics of counter-rotating fans[R]. ASME Paper HT-FED2004-56435, 2004.
    [19] MILESHIN V I, NYUKHTIKOV M A, OREKHOV I K, et al. Open counter-rotating fan blades optimization based on 3D inverse problem navier-stokes solution method with the aim of tonal noise reduction[R]. ASME Paper GT2008-51173, 2008.
    [20] DELATTRE G, FALISSARD F. Influence of torque ratio on counter-rotating open-rotor interaction noise[R]. AIAA 2014-2969, 2014.
    [21] 周亦成,单鹏. 可压升力面理论桨扇气动设计反问题方法[J]. 航空动力学报,2017,32(6): 1456-1469. doi: 10.13224/j.cnki.jasp.2017.06.024

    ZHOU Yicheng,SHAN Peng. Inverse design approach for propfan aerodynamics based on compressible lifting surface theory[J]. Journal of Aerospace Power,2017,32(6): 1456-1469. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.06.024
    [22] ROHRBACH C. A report on the aerodynamic design and wind tunnel test of a prop-fan model[R]. AIAA-76-667, 1976.
    [23] FERRANTE P, VILMIN S, HIRSCH C, et al. Integrated “CFD-acoustic” computational approach to the simulation of a contra rotating open rotor at angle of attack[R]. AIAA 2013-2242, 2013.
    [24] ENVIA E. Contra-rotating open rotor tone noise prediction[R]. AIAA 2014-2606, 2014.
    [25] ENVIA E. Open rotor aeroacoustic modelling[R]. NASA/TM-2012-217740, 2012.
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  325
  • HTML浏览量:  121
  • PDF量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 网络出版日期:  2023-02-12

目录

    /

    返回文章
    返回