留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反推力装置对民航飞机减速性能影响

黄敬杰 张鑫 孟超 田琦楠 徐丹

黄敬杰, 张鑫, 孟超, 等. 反推力装置对民航飞机减速性能影响[J]. 航空动力学报, 2023, 38(3):728-734 doi: 10.13224/j.cnki.jasp.20210215
引用本文: 黄敬杰, 张鑫, 孟超, 等. 反推力装置对民航飞机减速性能影响[J]. 航空动力学报, 2023, 38(3):728-734 doi: 10.13224/j.cnki.jasp.20210215
HUANG Jingjie, ZHANG Xin, MENG Chao, et al. Effect of thrust reverser on the deceleration performance of civil aircraft[J]. Journal of Aerospace Power, 2023, 38(3):728-734 doi: 10.13224/j.cnki.jasp.20210215
Citation: HUANG Jingjie, ZHANG Xin, MENG Chao, et al. Effect of thrust reverser on the deceleration performance of civil aircraft[J]. Journal of Aerospace Power, 2023, 38(3):728-734 doi: 10.13224/j.cnki.jasp.20210215

反推力装置对民航飞机减速性能影响

doi: 10.13224/j.cnki.jasp.20210215
基金项目: 中国国家留学基金(201905345024)
详细信息
    作者简介:

    黄敬杰(1987-),女,工程师,硕士,主要从事反推力装置与飞发一体化研究。E-mail:jie0129@126.com

  • 中图分类号: V231

Effect of thrust reverser on the deceleration performance of civil aircraft

  • 摘要:

    为评估反推力装置提供的反向推力与其结构件质量增加对民航飞机减速性能的综合影响,借助克兰菲尔德大学发动机总体性能仿真软件Turbomatch,参考CFM56发动机建立正、反推力状态发动机模型,并以A320飞机为配装对象开展研究。将风扇及涡轮直径做为特征参数,完成推进系统质量的初步估算。对比飞机在干燥跑道及雨雪条件下常规着陆过程中滑跑距离及减速时间,完成反推排气角度、跑道条件等影响因素对反推力装置提升飞机减速性能收益分析。研究表明:配装反推力装置轴向排气角度越小,飞机减速性能更加。以55°排气角度为基础,减小10°的排气角度可带来约7%的减速收益。反推力装置在湿滑跑道的减速收益更大,比干燥跑道滑跑距离缩短约41%,滑跑时间缩短32%。

     

  • 图 1  着陆过程发动机状态及刹车使用状态

    Figure 1.  Engine power and breaking system condition during landing phase

    图 2  发动机模型

    Figure 2.  Engine model components

    图 3  风扇工作点(反推力装置展开)

    Figure 3.  Fan operating points (thrust reverser deployed)

    图 4  反推力装置排气角度

    Figure 4.  Deflection angle of thrust reverser

    图 5  发动机推力

    Figure 5.  Engine thrust

    图 6  着陆减速过程受力分析

    Figure 6.  Forces during landing deceleration

    图 7  排气角度影响

    Figure 7.  Effect of deflection angle

    图 8  跑道条件的影响

    Figure 8.  Effect of runway condition

    表  1  常规着陆发动机状态

    Table  1.   Engine power condition during landing

    速度/(km/h)配装反推配装喷管
    反推状态发动机状态发动机状态
    0收起慢车慢车
    60收起慢车慢车
    110收起慢车慢车
    展开最大反推慢车
    120展开最大反推慢车
    180展开最大反推慢车
    245展开最大反推慢车
    260展开最大反推慢车
    下载: 导出CSV

    表  2  发动机性能参数

    Table  2.   Engine performance parameters

    发动机参数起飞慢车最大反推
    发动机流量/(kg/s)408.1129.09370.63
    净推力/kN120.7111.68−31.65
    耗油率/(g/(kN·s))8.4610.017.88
    涵道比5.77.076.16
    风扇压比1.641.071.54
    总压比27.645.522.43
    涡轮前温度/K13908001270
    下载: 导出CSV

    表  3  着陆质量

    Table  3.   Landing weight

     项目配装组件质量/kg增加量/%
    推进系统质量配装喷管310612.0
    配装反推3478
    飞机总着陆质量 配装喷管645001.2
    配装反推65243
    下载: 导出CSV

    表  4  着陆减速距离与时间

    Table  4.   Landing deceleration distance and time

    参数滑跑距离/m反推使用时间/s
    A320着陆计算值141017.47
    A320着陆实际值149018.00
    偏差/%5.352.93
    下载: 导出CSV
  • [1] YETTER J A. Why do airlines want and use thrust reversers? A compilation of airline industry responses to a survey regarding the use of thrust reversers on commercial transport airplanes[R]. NASA-TM-109158, 1995.
    [2] YETTER J, ASBURY S, LARKIN M, et al. Static performance of several novel thrust reverser concepts for subsonic transport applications[R]. NASA/TM-2000-210300, 2000.
    [3] 王占学,张晨,刘春阳. 抓斗式反推装置打开时反推性能参数计算[J]. 航空动力学报,2009,24(10): 2157-2162. doi: 10.13224/j.cnki.jasp.2009.10.007

    WANG Zhanxue,ZHANG Chen,LIU Chunyang. Mathematical model for calculating effects of target type thrust reverser on turbofan engine performance[J]. Journal of Aerospace Power,2009,24(10): 2157-2162. (in Chinese) doi: 10.13224/j.cnki.jasp.2009.10.007
    [4] TRAPP L, OLIVEIRA G. Aircraft thrust reverser cascade configuration evaluation through CFD[R]. AIAA-2003-723, 2003.
    [5] CHEN C. Computational procedures for complex three-dimensional geometries including thrust reverser effluxes and APUs[R]. AIAA-2001-3747, 2001.
    [6] MARCONI F, GILBERT B, TINDELL R. Computational fluid dynamics support of the development of a blockerless engine thrust reverser concept[C]//33rd Joint Propulsion Conference and Exhibit. Seattle: AIAA Press, 1997: 3151-3167.
    [7] BUTTERFIELD J, YAO H, CURRAN R, et al. Integration of aerodynamic, structural, cost and manufacturing cosiderations during the conceptual design of a thrust reverser cascade[R]. AIAA-2004-282, 2004.
    [8] TORENBEEK E. Synthesis of subsonic airplane design: an introduction to the preliminary design of subsonic general aviation and transport aircraft, with emphasis on layout, aerodynamic design, propulsion and performance[M]. London, UK: Kluwer Academic Publishers, 1982.
    [9] WATERS M H, SCHAIRER E T. Analysis of turbofan propulsion system weight and dimensions[R]. NASA-TM-X-73199, 1977.
    [10] GUHA A,BOYLAN D,GALLAGHER P. Determination of optimum specific thrust for civil aero gas turbine engines: a multidisciplinary design synthesis and optimisation[J]. Proceedings of the Institution of Mechanical Engineers,2013,227(3): 502-527. doi: 10.1177/0954410011435623
    [11] MAHMOOD T, JACKSON A, SETHI V, et al. Thrust reverser for a separate exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance[R]. ASME Paper GT2001-46397, 2001.
    [12] 黄敬杰,马晓健,张鑫,等. 涡扇发动机配装反推力装置综合影响分析[J]. 航空发动机,2021,47(4): 29-36. doi: 10.13477/j.cnki.aeroengine.2021.04.004

    HUANG Jingjie,MA Xiaojian,ZHANG Xin,et al. Comprehensive influence analysis of turbofan engine with a thrust reverser[J]. Aeroengine,2021,47(4): 29-36. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2021.04.004
    [13] Airbus. Airplane characteristics airport and maintenance planning for A320[EB/OL]. [2021-03-18]. https://www.airbus.com/sites/g/files/jlcbta136/files/2022-02/Airbus-techdata-AC_A320_0322.pdf
    [14] Airbus. Airplane characteristics airport and maintenance planning for A380[EB/OL]. [2021-03-18]. https://www.airbus.com/sites/g/files/jlcbta136/files/2021-11/Airbus-Aircraft-AC-A380.pdf
    [15] PACHIDIS V. Gas turbine advanced performance simulation[D]. Cranfield: Cranfield University, 2006.
    [16] EL-SAYED A F. Aircraft propulsion and gas turbine engines[M]. London, UK: CRC Press, 2017.
    [17] SAARLAS M. Aircraft performance[M]. New Jersey, US: John Wiley & Sons Incorporated, 2007.
    [18] KUNDU A K. Aircraft design[M]. Cambridge, UK: Cambridge University Press, 2010.
    [19] SUN J, HOEKSTRA J M, ELLERBROEK J. Aircraft drag polar estimation based on a stochastic hierarchical model[EB/OL]. [ 2021-03-18]. https://www.sesarju.eu/sites/default/files/documents/sid/2018/papers/SIDs_2018_paper_75.pdf
    [20] POVOLNY J H, STEFFEN F W, MCARDLE J G. Summary of scale-model thrust-reverser investigation[R]. NACA-TR-1314, 1955.
    [21] KEVIN M M. Results from two surveys of the use of reverse thrust of aircraft landing at Heathrow airport [R]. EJT/KMM/1126/14.8, 2005.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  299
  • HTML浏览量:  155
  • PDF量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 网络出版日期:  2023-02-10

目录

    /

    返回文章
    返回