Effect of thrust reverser on the deceleration performance of civil aircraft
-
摘要:
为评估反推力装置提供的反向推力与其结构件质量增加对民航飞机减速性能的综合影响,借助克兰菲尔德大学发动机总体性能仿真软件Turbomatch,参考CFM56发动机建立正、反推力状态发动机模型,并以A320飞机为配装对象开展研究。将风扇及涡轮直径做为特征参数,完成推进系统质量的初步估算。对比飞机在干燥跑道及雨雪条件下常规着陆过程中滑跑距离及减速时间,完成反推排气角度、跑道条件等影响因素对反推力装置提升飞机减速性能收益分析。研究表明:配装反推力装置轴向排气角度越小,飞机减速性能更加。以55°排气角度为基础,减小10°的排气角度可带来约7%的减速收益。反推力装置在湿滑跑道的减速收益更大,比干燥跑道滑跑距离缩短约41%,滑跑时间缩短32%。
Abstract:The combined effect of the reverse thrust and weight increase of the thrust reverser on the deceleration performance of a civil aircraft was analyzed. A hypothetical turbofan model based on the CFM56 engine was established by Turbomatch software from Cranfield University, with A320 aircraft taken as the model. The propulsion system weight was estimated using the fan and turbine diameter. After discussion of aircraft deceleration benefit on the dry runway or icy runway, effects of the deflection angle and runway condition on the deceleration distance during conventional landing phase were analyzed. It showed that the thrust reversers were more efficient with small deflection angel. Based on a deflection angle of 55°, 10° reduction resulted in a deceleration benefit of approximately 7%. And the thrust reversers were more beneficial on the wet/icy runway, with the distance and time down by about 41% and 32% compared with the dry runway.
-
Key words:
- landing deceleration distance /
- deceleration time /
- thrust reverser /
- turbofan /
- deflection angle
-
表 1 常规着陆发动机状态
Table 1. Engine power condition during landing
速度/(km/h) 配装反推 配装喷管 反推状态 发动机状态 发动机状态 0 收起 慢车 慢车 60 收起 慢车 慢车 110 收起 慢车 慢车 展开 最大反推 慢车 120 展开 最大反推 慢车 180 展开 最大反推 慢车 245 展开 最大反推 慢车 260 展开 最大反推 慢车 表 2 发动机性能参数
Table 2. Engine performance parameters
发动机参数 起飞 慢车 最大反推 发动机流量/(kg/s) 408.1 129.09 370.63 净推力/kN 120.71 11.68 −31.65 耗油率/(g/(kN·s)) 8.46 10.01 7.88 涵道比 5.7 7.07 6.16 风扇压比 1.64 1.07 1.54 总压比 27.64 5.5 22.43 涡轮前温度/K 1390 800 1270 表 3 着陆质量
Table 3. Landing weight
项目 配装组件 质量/kg 增加量/% 推进系统质量 配装喷管 3106 12.0 配装反推 3478 飞机总着陆质量 配装喷管 64500 1.2 配装反推 65243 表 4 着陆减速距离与时间
Table 4. Landing deceleration distance and time
参数 滑跑距离/m 反推使用时间/s A320着陆计算值 1410 17.47 A320着陆实际值 1490 18.00 偏差/% 5.35 2.93 -
[1] YETTER J A. Why do airlines want and use thrust reversers? A compilation of airline industry responses to a survey regarding the use of thrust reversers on commercial transport airplanes[R]. NASA-TM-109158, 1995. [2] YETTER J, ASBURY S, LARKIN M, et al. Static performance of several novel thrust reverser concepts for subsonic transport applications[R]. NASA/TM-2000-210300, 2000. [3] 王占学,张晨,刘春阳. 抓斗式反推装置打开时反推性能参数计算[J]. 航空动力学报,2009,24(10): 2157-2162. doi: 10.13224/j.cnki.jasp.2009.10.007WANG Zhanxue,ZHANG Chen,LIU Chunyang. Mathematical model for calculating effects of target type thrust reverser on turbofan engine performance[J]. Journal of Aerospace Power,2009,24(10): 2157-2162. (in Chinese) doi: 10.13224/j.cnki.jasp.2009.10.007 [4] TRAPP L, OLIVEIRA G. Aircraft thrust reverser cascade configuration evaluation through CFD[R]. AIAA-2003-723, 2003. [5] CHEN C. Computational procedures for complex three-dimensional geometries including thrust reverser effluxes and APUs[R]. AIAA-2001-3747, 2001. [6] MARCONI F, GILBERT B, TINDELL R. Computational fluid dynamics support of the development of a blockerless engine thrust reverser concept[C]//33rd Joint Propulsion Conference and Exhibit. Seattle: AIAA Press, 1997: 3151-3167. [7] BUTTERFIELD J, YAO H, CURRAN R, et al. Integration of aerodynamic, structural, cost and manufacturing cosiderations during the conceptual design of a thrust reverser cascade[R]. AIAA-2004-282, 2004. [8] TORENBEEK E. Synthesis of subsonic airplane design: an introduction to the preliminary design of subsonic general aviation and transport aircraft, with emphasis on layout, aerodynamic design, propulsion and performance[M]. London, UK: Kluwer Academic Publishers, 1982. [9] WATERS M H, SCHAIRER E T. Analysis of turbofan propulsion system weight and dimensions[R]. NASA-TM-X-73199, 1977. [10] GUHA A,BOYLAN D,GALLAGHER P. Determination of optimum specific thrust for civil aero gas turbine engines: a multidisciplinary design synthesis and optimisation[J]. Proceedings of the Institution of Mechanical Engineers,2013,227(3): 502-527. doi: 10.1177/0954410011435623 [11] MAHMOOD T, JACKSON A, SETHI V, et al. Thrust reverser for a separate exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance[R]. ASME Paper GT2001-46397, 2001. [12] 黄敬杰,马晓健,张鑫,等. 涡扇发动机配装反推力装置综合影响分析[J]. 航空发动机,2021,47(4): 29-36. doi: 10.13477/j.cnki.aeroengine.2021.04.004HUANG Jingjie,MA Xiaojian,ZHANG Xin,et al. Comprehensive influence analysis of turbofan engine with a thrust reverser[J]. Aeroengine,2021,47(4): 29-36. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2021.04.004 [13] Airbus. Airplane characteristics airport and maintenance planning for A320[EB/OL]. [2021-03-18]. https://www.airbus.com/sites/g/files/jlcbta136/files/2022-02/Airbus-techdata-AC_A320_0322.pdf [14] Airbus. Airplane characteristics airport and maintenance planning for A380[EB/OL]. [2021-03-18]. https://www.airbus.com/sites/g/files/jlcbta136/files/2021-11/Airbus-Aircraft-AC-A380.pdf [15] PACHIDIS V. Gas turbine advanced performance simulation[D]. Cranfield: Cranfield University, 2006. [16] EL-SAYED A F. Aircraft propulsion and gas turbine engines[M]. London, UK: CRC Press, 2017. [17] SAARLAS M. Aircraft performance[M]. New Jersey, US: John Wiley & Sons Incorporated, 2007. [18] KUNDU A K. Aircraft design[M]. Cambridge, UK: Cambridge University Press, 2010. [19] SUN J, HOEKSTRA J M, ELLERBROEK J. Aircraft drag polar estimation based on a stochastic hierarchical model[EB/OL]. [ 2021-03-18]. https://www.sesarju.eu/sites/default/files/documents/sid/2018/papers/SIDs_2018_paper_75.pdf [20] POVOLNY J H, STEFFEN F W, MCARDLE J G. Summary of scale-model thrust-reverser investigation[R]. NACA-TR-1314, 1955. [21] KEVIN M M. Results from two surveys of the use of reverse thrust of aircraft landing at Heathrow airport [R]. EJT/KMM/1126/14.8, 2005.