留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S型泡沫金属管翅式换热器的设计与实验研究

赵红柳 孙明瑞 姜楠 刘卫国 闫广涵 宋永臣 赵佳飞

赵红柳, 孙明瑞, 姜楠, 等. S型泡沫金属管翅式换热器的设计与实验研究[J]. 航空动力学报, 2023, 38(4):840-849 doi: 10.13224/j.cnki.jasp.20210219
引用本文: 赵红柳, 孙明瑞, 姜楠, 等. S型泡沫金属管翅式换热器的设计与实验研究[J]. 航空动力学报, 2023, 38(4):840-849 doi: 10.13224/j.cnki.jasp.20210219
ZHAO Hongliu, SUN Mingrui, JIANG Nan, et al. Design and experimental study of S-type foam metal tube-fin heat exchanger[J]. Journal of Aerospace Power, 2023, 38(4):840-849 doi: 10.13224/j.cnki.jasp.20210219
Citation: ZHAO Hongliu, SUN Mingrui, JIANG Nan, et al. Design and experimental study of S-type foam metal tube-fin heat exchanger[J]. Journal of Aerospace Power, 2023, 38(4):840-849 doi: 10.13224/j.cnki.jasp.20210219

S型泡沫金属管翅式换热器的设计与实验研究

doi: 10.13224/j.cnki.jasp.20210219
基金项目: 国家自然科学基金(51622603,51806028,51806027,U19B2005); 国家科技重大专项(2017-Ⅲ-0005-0029);2020年度南京航空航天大学重点实验室开发课题(CEPE2020016)
详细信息
    作者简介:

    赵红柳(1997-),女,硕士生,主要从事航空发动机换热器研究

    通讯作者:

    赵佳飞(1980-),男,教授、博士生导师,博士,从事多孔介质强化换热基础理论与应用技术研究。E-mail: jfzhao@dlut.edu.cn

  • 中图分类号: V231.1

Design and experimental study of S-type foam metal tube-fin heat exchanger

  • 摘要:

    为解决航空发动机部件热防护以及热管理问题,针对CCA(cooled cooling air)技术,采用高孔隙率泡沫金属替代传统管翅式换热器金属翅片,设计一种轻质、高效、紧凑的小尺寸S型泡沫金属管翅式换热器。换热器芯体为3D打印的钛合金制作,重129 g,由S型管束以及泡沫金属翅片组成,翅片安装在管束直管段处。流动传热实验模拟航空发动机机匣外部的空-油换热器,冷侧为水,热侧为高温空气,测定两侧流体的流量、进出口温度及压力。结果表明:泡沫金属作为换热器的翅片,传热系数增大43.94%、换热量提升21.7%、综合换热性能增加25.43%,功重比平均提升17.26%,可达14.61 kW/kg。这说明泡沫金属能够提升换热器的整体性能,可用于未来航空发动机相似结构换热器的设计。

     

  • 图 1  封装后的换热器

    Figure 1.  Packaged heat exchanger

    图 2  S型泡沫金属管壳式换热器结构

    Figure 2.  S-type foam metal shell and tube heat exchanger structure

    图 3  开尔文胞体多孔介质结构[10, 12]

    Figure 3.  The Kelvin cell porous media structure[10, 12]

    图 4  S型管束管壳式换热器结构

    Figure 4.  S-type shell and tube heat exchanger structure

    图 5  两种管壳式换热器芯体

    Figure 5.  Two shell and tube heat exchanger cores

    图 6  空气路实验装置

    Figure 6.  Air circuit experimental device

    图 7  简易水路系统装置

    Figure 7.  Simple waterway system device

    图 8  水侧进出口温差随空气进口温度的变化

    Figure 8.  Temperature difference between the inlet and outlet of the water side changes with the temperature of the air inlet

    图 9  换热器传热系数随空气进口温度的变化

    Figure 9.  Heat transfer coefficient changes with the air inlet temperature

    图 10  空气进口温度为453 K,qw=25 g/s,qa=126 g/s,两种管式换热器的压降与换热量的变化规律

    Figure 10.  Air inlet temperature is 453 K, qw=25 g/s,qa=126 g/s,the pressure drop and heat exchange rate changes of the two tube heat exchangers

    图 11  不同换热器等泵功下综合换热性能对比

    Figure 11.  Comparison of comprehensive heat transfer performance under different heat exchangers and other pump power

    图 12  不同换热器单位质量功率对比

    Figure 12.  Comparison of unit mass power of different heat exchangers

    图 13  相似质量流量条件,不同换热器空气侧传热系数

    Figure 13.  Different heat exchangers air-side heat transfer coefficients under similar mass flow condition

    表  1  实验参数

    Table  1.   Experimental parameters

    质量流量/(g/s)水侧温度/K空气侧温度/K
    水质量流量为16.7,
    空气质量流量为84
    289363
    393
    423
    453
    水质量流量为25,
    空气质量流量为126
    289363
    393
    423
    453
    下载: 导出CSV

    表  2  测量装置

    Table  2.   Measuring device

    测量装置品牌型号测量范围精度
    压力
    传感器
    OMEGAPX409-
    150AUSBH
    0~1.03 MPa±0.08%
    流量计美国
    SIERRA
    640S-NAA-L06-
    M0-EN2-P2-V4-
    DD-CRWE-0-
    SFC15.0525X
    ±0.5%
    热电偶沃施莱格Ⅰ级精度的
    K型热电偶
    273~1573 K±273.5 K
    数据
    采集仪
    安捷伦34972A
    下载: 导出CSV

    表  3  各类换热器极限工作环境

    Table  3.   Limit operating condition of different heat exchangers

    换热器类型最大压力/MPa最大温度/K效率/%
    板式4673>85
    板翅式12923>90
    螺旋式3673>90
    管翅式20473>90
    管式(正常)3.11023>85
    管式(微翅)101003>95
    微通道式501273>97
    下载: 导出CSV

    表  4  各类换热器所需设计特性

    Table  4.   Design requirements of different heat exchangers

    特性回热器间冷器CCA
    传热系数很高很高
    质量流量很高很高
    传热效率很高
    操作压力非常高
    工作温度非常高
    传热温差
    适合形式管式、一次表面管翅式、一次表面管式
    下载: 导出CSV

    表  5  各类航发换热器工况及换热性能对比

    Table  5.   Comparison of working conditions and heat tasfer performance of various aviation heat exchangers

    换热器类型体积参数/
    mm
    冷-热
    侧介质
    热侧进口
    温度/K
    热侧进口
    压力/MPa
    热侧质量流量/
    (kg/s)
    热侧进出口
    温差/K
    表面传热
    系数/(W/(m2·K))
    换热性能
    评价指标
    3D打印S型泡沫
    金属管壳换热器
    59×52×51水-空气363~4530.30.126286~300950功率质量比
    14.61 kW/kg
    3D打印类多孔换热器460×400×500水-空气3430.120 m/s303500~800换热量
    200~500 kW
    3D打印一次
    表面换热器
    74×54×100空气-空气333~3730.34~1.40.008~0.02363200~550换热能效0.5~0.8
    螺旋管紧凑式换热器370×276×138空气-空气8330.240.05461122~336功率质量比
    4.9 kW/kg
    细管蛇形管紧
    凑式换热器
    291×60×80燃油-空气43310.10~0.18588.42360功率质量比
    15.48 kW/kg
    堆积泡沫金属翅片101×18×5水-空气273~3335×10−40.0005~0.002288~323300~500
    填充多孔介质环形冷却通道40×1×50冷却剂-空气<4730.14~1.6830~150283~31920
    下载: 导出CSV
  • [1] 史美中, 王中铮. 热交换器原理与设计 [M]. 南京: 东南大学出版社, 2014.
    [2] SAIDI A, SUNDÉN B, ERIKSSON D. Intercoolers in gas turbine systems and combi-processes for production of electricity[C]//Proceedings of the Asme Turbo Expo: Power for Land, Sea, & Air. Munich: ASME Turbo Expo, 2000, 11-15.
    [3] YOSHIDA T. Cooling systems for ultra-high temperature turbines[J]. Heat Transfer in Gas Turbin Systems,2010,934: 194-205.
    [4] PAPDOPOULOS T, PILIDIS P. Introduction of intercooling in a high bypass jet engine[C]// Proceedings of the ASME Turbo Expo: Power for Land, Sea, & Air. Munich: ASME Turbo Expo, 2000: 115-117.
    [5] 于霄,吕多,李洪莲,等. 空气冷却器在航空发动机上的应用及流动传热试验分析技术研究[J]. 计测技术,2017,37(3): 34-38.

    YU Xiao,LÜ Duo,LI Honglian,et al. Application of air cooler in aero-engine and research on flow and heat transfer test analysis technology[J]. Measurement Technology,2017,37(3): 34-38. (in Chinese)
    [6] MIN J K,JI H J,MAN Y H,et al. High temperature heat exchanger studies for applications to gas turbines[J]. International Journal of Heat and Mass Transfer,2009,46(2): 175-186. doi: 10.1007/s00231-009-0560-3
    [7] 张涛,孙冰. 某探测器上火箭发动机热防护仿真与设计[J]. 航空动力学报,2010,25(6): 1407-1411.

    ZHANG Tao,SUN Bing. Simulation and design of thermal protection for a rocket engine on a probe[J]. Journal of Aerospace Power,2010,25(6): 1407-1411. (in Chinese)
    [8] 于喜奎. 高超声速飞机热管理系统控制模型构建与仿真[J]. 航空动力学报,2018,33(3): 741-751.

    YU Xikui. Construction and simulation of control model for thermal management system of hypersonic aircraft[J]. Journal of Aerospace Power,2018,33(3): 741-751. (in Chinese)
    [9] BHATTACHARYA A,CALMIDI V V,MAHAJAN R L,et al. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer,2002,45(5): 1017-1031. doi: 10.1016/S0017-9310(01)00220-4
    [10] SUN Mingrui, HU Chengzhi, ZHANG Lunxiang, et al. Pore-scale simulation of forced convection heat transfer under turbulent conditions in open-cell metal foam [J]. Chemical Engineering Journal, 2020, 389: 124427.1-124427.11.
    [11] SUN M, LI M, HU C, et al. Comparison of forced convective heat transfer between pillar and real foam structure under high Reynolds number[J]. Applied Thermal Engineering, 2021, 182: 116-130.
    [12] SUN Mingrui,YANG Lei,HU Chengzhi,et al. Simulation of forced convective heat transfer in Kelvin cells with optimized skeletons[J]. International Journal of Heat and Mass Transfer,2021,165: 120637.1-120637.11.
    [13] ZHAO Jiafei,SUN Mingrui,ZHANG Lunxiang,et al. Forced convection heat transfer in porous structure: effect of morphology on pressure drop and heat transfer coefficient[J]. Journal of Thermal Science,2021,30: 363-393. doi: 10.1007/s11630-021-1403-x
    [14] HU Chengzhi,SUN Mingrui,XIE Zhiyong,et al. Numerical simulation on the forced convection heat transfer of porous medium for turbine engine heat exchanger applications[J]. Applied Thermal Engineering,2020,180: 115845.1-115845.12.
    [15] RASHIDI S,TAMAYOL A,VALIPOUR M S,et al. Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring[J]. International Journal of Heat Mass Transfer,2013,63: 91-100. doi: 10.1016/j.ijheatmasstransfer.2013.03.006
    [16] 孙硕. 填充泡沫金属换热管内含油制冷剂流动沸腾换热与压降特性研究 [D]. 上海: 上海交通大学, 2013.

    SUN Shuo. Research on flow boiling heat transfer and pressure drop characteristics of oil-bearing refrigerant in filled foamed metal heat exchange tube[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese)
    [17] HUISSEUNE H,DE SCHAMPHELEIRE S,AMEEL B,et al. Comparison of metal foam heat exchangers to a finned heat exchanger for low Reynolds number applications[J]. International Journal of Heat and Mass Transfer,2015,89: 1-9. doi: 10.1016/j.ijheatmasstransfer.2015.05.013
    [18] MAO S,LOVE N,LEANOS A,et al. Correlation studies of hydrodynamics and heat transfer in metal foam heat exchangers[J]. Applied Thermal Engineering,2014,71(1): 104-108. doi: 10.1016/j.applthermaleng.2014.06.035
    [19] DAI Z,NAWAZ K,PARK Y,et al. A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications[J]. Heat Transfer Engineering,2012,33(1/2/3): 21-30.
    [20] 于霄,吕多,赵孟,等. 3D打印技术在航空发动机换热器研制中的应用展望[J]. 航空制造技术,2014,466(22): 43-46. doi: 10.3969/j.issn.1671-833X.2014.22.009

    YU Xiao,LÜ Duo,ZHAO Meng,et al. Application prospect of 3D printing technology in the development of aero-engine heat exchanger[J]. Aviation Manufacturing Technology,2014,466(22): 43-46. (in Chinese) doi: 10.3969/j.issn.1671-833X.2014.22.009
    [21] 任勇翔,于霄,张筱喆,等. 类多孔结构超轻高效换热器流动传热特性研究[J]. 南京航空航天大学学报,2019,51(4): 449-455.

    REN Yongxiang,YU Xiao,ZHANG Xiaozhe,et al. Research on flow and heat transfer characteristics of ultra-light and high-efficiency heat exchanger with similar porous structure[J]. Journal of Nanjing University of Aeronautics and Astronautics,2019,51(4): 449-455. (in Chinese)
    [22] 李俊,蒋彦龙,周年勇. 交叉式多股流板翅式换热器数值研究[J]. 航空动力学报,2016,31(5): 1087-1096.

    LI Jun,JIANG Yanlong,ZHOU Nianyong. Numerical study of cross-flow plate-fin heat exchanger[J]. Journal of Aerospace Power,2016,31(5): 1087-1096. (in Chinese)
    [23] MOHAMMADPOUR-GHADIKOLAIE M,SAFFAR-AVVAL M,MANSOORI Z,et al. Heat transfer investigation of a tube partially wrapped by metal porous layer as a potential novel tube for air cooled heat exchangers[J]. Journal of Heat Transfer,2019,141(1): 011802.1-011802.12.
    [24] 刘银龙, 付衍琛, 闻洁, 等. 螺旋管式空气-空气换热器的设计和实验研究[C]//中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议论文集. 昆明: 推进技术, 2019, 25-28.
    [25] 曾全生. 换热器热阻分析[J]. 化工设计,1998,23: 31-35.

    ZENG Quansheng. Thermal resistance analysis of heat exchanger[J]. Chemical Engineering Design,1998,23: 31-35. (in Chinese)
    [26] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001.
    [27] 周飚. 管翅式换热器性能及结构综合优化的热设计方法[D]. 武汉: 华中科技大学, 2004.

    ZHOU Biao. Thermal design method for comprehensive optimization of performance and structure of tube-fin heat exchanger[D]. Wuhan: Huazhong University of Science and Technology, 2004. (in Chinese)
    [28] 何雅玲, 陶文铨, 王煜, 等. 换热设备综合评价指标的研究进展[M]. 西安: 中国工程热物理学会(传热传质学), 2011.
    [29] 吕多,陆海鹰,周建军,等. 临近空间飞行器推进系统预冷器关键技术[J]. 航空学报,2016,31(增刊): 119-126.

    LÜ Duo,LU Haiying,ZHOU Jianjun,et al. Key technology of precooler for propulsion system of near-space vehicle[J]. Acta Aeronautica et Astronautica Sinica,2016,31(Suppl.): 119-126. (in Chinese)
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  261
  • HTML浏览量:  59
  • PDF量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 网络出版日期:  2023-02-28

目录

    /

    返回文章
    返回