留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超燃冲压发动机U型冷却通道的流道方案

胡家瑛 王振国 潘余 李佩波

胡家瑛, 王振国, 潘余, 李佩波. 超燃冲压发动机U型冷却通道的流道方案[J]. 航空动力学报, 2022, 37(1): 11-25. doi: 10.13224/j.cnki.jasp.20210242
引用本文: 胡家瑛, 王振国, 潘余, 李佩波. 超燃冲压发动机U型冷却通道的流道方案[J]. 航空动力学报, 2022, 37(1): 11-25. doi: 10.13224/j.cnki.jasp.20210242
HU Jiaying, WANG Zhenguo, PAN Yu, LI Peibo. Flow channel scheme of U-shaped cooling channel in scramjet[J]. Journal of Aerospace Power, 2022, 37(1): 11-25. doi: 10.13224/j.cnki.jasp.20210242
Citation: HU Jiaying, WANG Zhenguo, PAN Yu, LI Peibo. Flow channel scheme of U-shaped cooling channel in scramjet[J]. Journal of Aerospace Power, 2022, 37(1): 11-25. doi: 10.13224/j.cnki.jasp.20210242

超燃冲压发动机U型冷却通道的流道方案

doi: 10.13224/j.cnki.jasp.20210242
详细信息
    作者简介:

    胡家瑛(1991—),男,博士,主要从事超燃冲压发动机再生冷却研究。

  • 中图分类号: V231.1

Flow channel scheme of U-shaped cooling channel in scramjet

  • 摘要: 对四流道U型流道平板的不同流道方案进行三维仿真模拟。主要针对同向入口U型流道平板和反向入口U型流道平板这两种构型进行研究,并在每一种构型中采用不同的冷却剂出入口方案,并对不同方案的冷却效果进行研究和对比。研究表明:两种构型的出入口相间排布的流道方案更适合于有一定规律的非均匀热流;两种构型的入口流道位于平板两侧的流道方案,更适用于相对较均匀的热流环境;U型通道中相邻通道间冷却剂的温差较大,伴随强烈的肋间传热,并且较低温的冷却剂通道能够从燃烧室壁面吸收更多的热流,能明显减小相邻高温通道的冷却负担。

     

  • [1] CURRAN E T.Scramjet engines:the first forty years[J].Journal of Propulsion and Power,2001,17(6):1138-1148.
    [2] 王振国,梁剑寒,丁猛,等.高超声速飞行器动力系统研究进展[J].力学进展,2009,39(6):716-739.
    [3] 王振国,罗世彬,吴建军.可重复使用运载器研究进展[M].长沙:国防科技大学出版社,2004.
    [4] 罗世彬,吴先宇,罗文彩,等.机身推进系统一体化高超声速飞行器冷却性能分析[J].弹箭与制导学报,2004,24(1):56-62.
    [5] 西格尔 C.超燃冲压发动机:过程和特性[M].张新国,译.北京:航空工业出版社,2012.
    [6] 俞刚,范学军.超声速燃烧与高超声速推进[J].力学进展,2013,43(5):449-471.
    [7] FAN X,GONG Y,LI J,et al.Combustion and ignition of thermally cracked kerosene in supersonic model combustors[J].Journal of Propulsion and Power,2007,23(2):317-324.
    [8] EDWARDS T.Liquid fuels and propellants for aero-space propulsion:1903-2003[J].Journal of Propulsion and Power,2003,19(6):1089-1107.
    [9] ALGARNI A Z,SAHIN A Z,YIBAS B S,et al.Cooling of aerospace plane using liquid hydrogen and methane[J].Journal of Aircraft,1995,32(3):539-546.
    [10] 吴峰,王秋旺,罗来勤,等.液体火箭发动机推力室冷却通道传热优化计算[J].推进技术,2006,27(3):197-200.
    [11] 王厚庆,何国强,刘佩进,等.超燃冲压发动机燃烧室新型热结构的优化设计[J].推进技术,2009,30(3):263-266,313.
    [12] 牛禄,程惠尔,李明辉.高宽比和粗糙度对再生冷却通道流动的影响[J].上海交通大学学报,2002,36(11):1612-1615.
    [13] 陈建华,杨宝庆,周立新,等.人为粗糙度强化换热机理分析及效果评估[J].火箭推进,2004,30(4):1-5.
    [14] YOUN B,MILLS A F.Cooling panel optimization for the Active cooling system of a hypersonic aircraft[J].Journal of Thermophysics and Heat Transfer,1995,9(1):136-143.
    [15] 蒋劲,张若凌,乐嘉陵.超燃冲压发动机再生冷却热结构设计的计算工具[J].实验流体力学,2006,20(3):1-7.
    [16] FALEMPIN F,BOUCHEZ M,SALMON T,et al.An innovative technology for fuel-cooled composite materials structure[R].AIAA-2001-3703,2001.
    [17] WOSCHNAK A,OSCHWALD M.Thermal and fluid mechanical analysis of high aspect ratio cooling channels[R].AIAA-2001-3404,2001.
    [18] ZHONG F,FAN X,GONG Y,et al.Heat transfer of aviation kerosene at supercritical conditions[J].Journal of Thermophysics and Heat Transfer,2009,23(3):543-550.
    [19] WARD T A,ERVIN J S,SHAFER L,et al.Pressure effects on flowing mildly-cracked n-decane[J].Journal of Propulsion and Power,2005,21(2):344-355.
    [20] 王永鹏,范学军,仲峰泉,等.三维冷却结构中航空煤油对流传热特性实验研究[C]∥高超声速科技学术会议.江苏 无锡:中国科技学院高超声速科技中心,2010:1-7.
  • 加载中
计量
  • 文章访问数:  142
  • HTML浏览量:  11
  • PDF量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 刊出日期:  2022-01-28

目录

    /

    返回文章
    返回