留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于OpenFOAM的超临界压力下低温射流大涡模拟

李钰航 吴宝元 王祎 周立新

李钰航, 吴宝元, 王祎, 周立新. 基于OpenFOAM的超临界压力下低温射流大涡模拟[J]. 航空动力学报, 2022, 37(5): 1090-1099. doi: 10.13224/j.cnki.jasp.20210244
引用本文: 李钰航, 吴宝元, 王祎, 周立新. 基于OpenFOAM的超临界压力下低温射流大涡模拟[J]. 航空动力学报, 2022, 37(5): 1090-1099. doi: 10.13224/j.cnki.jasp.20210244
LI Yuhang, WU Baoyuan, WANG Yi, ZHOU Lixin. Large eddy simulation of cryogenic jet under supercritical pressure based on OpenFOAM[J]. Journal of Aerospace Power, 2022, 37(5): 1090-1099. doi: 10.13224/j.cnki.jasp.20210244
Citation: LI Yuhang, WU Baoyuan, WANG Yi, ZHOU Lixin. Large eddy simulation of cryogenic jet under supercritical pressure based on OpenFOAM[J]. Journal of Aerospace Power, 2022, 37(5): 1090-1099. doi: 10.13224/j.cnki.jasp.20210244

基于OpenFOAM的超临界压力下低温射流大涡模拟

doi: 10.13224/j.cnki.jasp.20210244
详细信息
    作者简介:

    李钰航(1993-),男,博士生,研究领域为液体火箭发动机喷雾燃烧。

  • 中图分类号: V434.3

Large eddy simulation of cryogenic jet under supercritical pressure based on OpenFOAM

  • 摘要: 为了深入认识低温射流在超临界压力下的流动特性,将真实流体热物性模型写入开源CFD程序OpenFOAM平台中,开发出了用于模拟超临界压力下流动过程的均相求解器。针对液氮跨临界、超临界射流进行大涡模拟,研究了环境条件变化对于低温射流流动特性的影响。结果表明:采用的真实流体模型能够在广泛的温度与压力范围内准确计算流体的热物理性质,在此基础上开发的均相求解器能够准确描述超临界条件下的低温射流,其流动特性主要表现为稠密液体与环境气体之间的剪切层不稳定以及湍流混合,此类变密度射流在湍流充分发展区域同常密度射流一样具有自相似特性;超临界射流相比于跨临界射流具有更高的混合效率以及更短的液核穿透长度;环境温度升高以及环境压力降低均使得低温射流与周边气体之间的密度梯度增加,对剪切层中不稳定波动的发展起到抑制作用,导致了射流液核长度的增加以及扩张角度的减小。

     

  • [1] MAYER W,SCHIK A.Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions[J].Journal of Propulsion and Power,1998,14(5):835-835.
    [2] MAYER W,SCHIK A,SCH?FFLER M,et al.Injection and mixing processes in high-pressure liquid oxygen/gaseous hydrogen rocket combustors[J].Journal of Propulsion and Power,2000,16(5):823-828.
    [3] MAYER W,IVANCIC B,SCHIK A,et al.Propellant atomization and ignition phenomena in liquid oxygen/gaseous hydrogen rocket combustors[J].Journal of Propulsion and Power,2001,17(4):794-799.
    [4] MAYER W,TELAAR J,BRANAM R,et al.Raman measurements of cryogenic injection at supercritical pressure[J].Heat and Mass Transfer,2003,39(8):709-719.
    [5] CHEHROUDI B,TALLEY D,COY E.Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures[J].Physics of Fluids,2002,14(2):850-861.
    [6] DAVIS D W,CHEHROUDI B.Measurements in an acoustically driven coaxial jet under sub-,near-,and supercritical conditions[J].Journal of Propulsion and Power,2007,23(2):364-374.
    [7] OEFELEIN J C,YANG V.Modeling high-pressure mixing and combustion processes in liquid rocket engines[J].Journal of Propulsion and Power,1998,14(5):843-857.
    [8] SCHMITT T,SELLE L,RUIZ A,et al.Large-eddy simulation of supercritical-pressure round jets[J].AIAA Journal,2010,48(9):2133-2144.
    [9] ZONG N,YANG V.Cryogenic fluid jets and mixing layers in transcritical and supercritical environments[J].Combustion Science and Technology,2006,179(1):193-227.
    [10] ZONG N,YANG V.Cryogenic fluid dynamics of pressure swirl injectors at supercritical conditions[J].Physics of Fluids,2008,20(5):056103.1-056103.15
    [11] WANG X,WANG Y,YANG V.Three-dimensional flow dynamics and mixing in a gas-centered liquid-swirl coaxial injector at supercritical pressure[J].Physics of Fluids,2019,31(6):065109.1-065109.14
    [12] HAKIM L,RUIZ A,SCHMITT T,et al.Large eddy simulations of multiple transcritical coaxial flames submitted to a high-frequency transverse acoustic modulation[J].Proceedings of the Combustion Institute,2015,35:1461-1468.
    [13] SCHMITT T,MERY Y,BOILEAU M,et al.Large eddy simulation of oxygen/methane flames under transcritical conditions[J].Proceedings of the Combustion Institute,2011,33:1383-1390.
    [14] URBANO A,SELLE L,STAFFELBACH G,et al.Exploration of combustion instability triggering using large eddy simulation of a multiple injector liquid rocket engine[J].Combustion and Flame,2016,169:129-140.
    [15] MA P C,BANUTI D,IHME M,et al.Numerical framework for transcritical real-fluid reacting flow simulations using the flamelet progress variable approach[R].AIAA-2017-0143,2017.
    [16] HUO H,WANG X,YANG V.A general study of counterflow diffusion flames at subcritical and supercritical conditions:Oxygen/hydrogen mixtures[J].Combustion and Flame,2014,161(12):3040-3050.
    [17] WANG X,ZHANG L,LI Y,et al.Supercritical combustion of gas-centered liquid-swirl coaxial injectors for staged-combustion engines[J].Combustion and Flame,2018,197:204-214.
    [18] ZONG N.Modeling and simulation of cryogenic fluid injection and mixing dynamics under supercritical conditions[D].State College,US:The Pennsylvania State University,2005.
    [19] TERASHIMA H,KAWAI S,YAMANISHI N.High-resolution numerical method for supercritical flows with large density variations[J].AIAA Journal,2011,49(12):2658-2672.
    [20] TERASHIMA H,KOSHI M.Approach for simulating gas-liquid-like flows under supercritical pressures using a high-order central differencing scheme[J].Journal of Computational Physics,2012,231(20):6907-6923.
    [21] LACAZE G,SCHMITT T,RUIZ A,et al.Comparison of energy-,pressure- and enthalpy-based approaches for modeling supercritical flows[J].Computers and Fluids,2019,181:35-56.
    [22] POLING B E,PRAUSNITZ J M,O'CONNELL J P.气液物性估算手册[M].赵红玲,王凤坤,陈圣坤,译.北京:化学工业出版社,2006.
    [23] POPE S B.Turbulent flows[M].Cambridge,UK:Cambridge University Express,2000.
    [24] HO CM,HUERRE P.Perturbed free shear layers[J].Annual Review of Fluid Mechanics,1984,16(1):365-422.
  • 加载中
计量
  • 文章访问数:  135
  • HTML浏览量:  13
  • PDF量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-16
  • 刊出日期:  2022-05-28

目录

    /

    返回文章
    返回