留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯方法与稳健理论的滚动轴承摩擦力矩不确定度建立方法

徐永智

徐永智. 基于贝叶斯方法与稳健理论的滚动轴承摩擦力矩不确定度建立方法[J]. 航空动力学报, 2022, 37(5): 1000-1009. doi: 10.13224/j.cnki.jasp.20210249
引用本文: 徐永智. 基于贝叶斯方法与稳健理论的滚动轴承摩擦力矩不确定度建立方法[J]. 航空动力学报, 2022, 37(5): 1000-1009. doi: 10.13224/j.cnki.jasp.20210249
XU Yongzhi. Uncertainties establishment method of friction moment on rolling bearing based on Bayesian theory and robust theory[J]. Journal of Aerospace Power, 2022, 37(5): 1000-1009. doi: 10.13224/j.cnki.jasp.20210249
Citation: XU Yongzhi. Uncertainties establishment method of friction moment on rolling bearing based on Bayesian theory and robust theory[J]. Journal of Aerospace Power, 2022, 37(5): 1000-1009. doi: 10.13224/j.cnki.jasp.20210249

基于贝叶斯方法与稳健理论的滚动轴承摩擦力矩不确定度建立方法

doi: 10.13224/j.cnki.jasp.20210249
基金项目: 校企合作项目(SZYhxkt-2021-002); 博士专项基金(SZYGCCRC-2021-007)
详细信息
    作者简介:

    徐永智(1974-),男,副教授,博士,主要从事滚动轴承性能研究。E-mail:xxyyzhzh@163.com

  • 中图分类号: V21;TH133.33

Uncertainties establishment method of friction moment on rolling bearing based on Bayesian theory and robust theory

  • 摘要: 基于贝叶斯方法与稳健化理论,提出一种未知分布时间序列不确定度的建立方法。该方法以中位数估计与Huber M估计融合方法分析时间序列数据的稳健性,构建贝叶斯先验分布,并与实验数据建立贝叶斯后验分布,创建以贝叶斯后验分布建立时间序列数据的不确定度。在显著性水平为0~0.1,通过对滚动轴承摩擦力矩分析,中位数估计与Huber M估计相融合方法确定了滚动轴承摩擦力矩稳健数据的边界值、显著性水平,构建了贝叶斯先验分布。以贝叶斯后验分布构建滚动轴承摩擦力矩不确定度。与经典统计学得到的不确定度比较,在相同置信水平下,该方法缩短了评估区间,提高了评估精度0~50%。该融合方法以稳健数据构建先验分布,提供一种贝叶斯方法先验分布建立方法;采用中位数估计与Huber M估计融合方法确定了数据显著性水平和边界值的确定,减小置信水平与稳健数据边界值主观确定的误差;为未知分布时间序列的不确定度建立提供了一种理论。

     

  • [1] IKER H,JOSU A,MIKEL A.Friction torque in four contact point slewing bearings:effect of manufacturing errors and ring stiffness[J].Mechanism and Machine Theory,2017,112:145-154.
    [2] JING Liu,YANG Zhanglin,SHAO Yimin.An investigation for the friction torque of a needle roller bearing with the roundness error[J].Mechanism and Machine Theory,2018,121:259-272.
    [3] GON?ALVES D,PINHO S,GRA?A B,et al.Friction torque in thrust ball bearings lubricated with polymer greases of different thickener content[J].Tribology International,2016,96(4):87-96.
    [4] GON?ALVES D,COUSSEAU T,GAMA A,et al.Friction torque in thrust roller bearings lubricated with greases,their base oils and bleed-oils[J].Tribology International,2017,107(12):306-319.
    [5] HAMMAMI M,MARTINS R,FERNANDES C,et al.Friction torque in rolling bearings lubricated with axle gear oils[J].Tribology International,2018,119(3):419-435.
    [6] YANG Weixu,WANG Xiaoli,LI Hanqing,et al.A novel tribometer for the measurement of friction torque in microball bearings[J].Tribology International,2017,114(10):402-408.
    [7] GAN K G,ZAITOV L M.Investigation into the dependence of the friction moment of high speed self lubrication ball bearing on the duration of the work rotational and load[J].Soviet Engineering Research,1990,10(2):41-46.
    [8] 白越,杨作起,黎海文,等.储能/姿控一体化飞轮能耗实验研究[J].光学精密工程,2007,15(2):243-247.
    [9] SOCHTING S,SHERRINGTON I,LEWIS S D,et al.An evaluation of the effect of simulated launch vibration on the friction performance and lubricatiuon of ball bearing for space applications[J].Wear,2006,260(11/12):1190-1202.
    [10] VISNADI L B,DE CASTRO H F.Influence of bearing clearance and oil temperature uncertainties on the stability threshold of cylindrical journal bearings[J].Mechanism and Machine Theory,2019,134:57-73.
    [11] MAO Wengui,LI Jianhua,HUANG Zhonghua,et al.Bearing dynamic parameters identification for a sliding bearing-rotor system with uncertainty[J].Inverse Problems in Science and Engineering,2018,26(8):1094-1108.
    [12] DHANISH P B,MATHEW J.Effect of CMM point coordinate uncertainty on uncertainties in determination of circular features[J].Measurement,2006,39(6):522-531.
    [13] WILLINK R,LIRA I.A united interpretation of different uncertainty intervals[J].Measurement,2005,38(1):61-66.
    [14] RATEL G.Evaluation of the uncertainty of the degree of evquivalence[J].Metrologia,2005,42:140-144.
    [15] CORDERO R R,ROTH P.Revisiting the problem of the evaluation of the uncertainty associated with a single measurement[J],Metrologia,2005,42:115-119.
    [16] KIAN P,DILEEP S.Uncertainty estimates in the fuzzy-product-limit estimator[J].International Journal of Uncertainty,Fuzziness and Knowledge-based System,2005,13(1):11-26.
    [17] RARNAN R,GRILLO P.Minimizing uncertainty in vapour cloud explosion modeling[J].Process Safty and Environmental Protection,2005,83(4):298-306.
    [18] XIA Xintao,WANG Zhongyu,GAO Yongsheng.Estimation of non-statistical uncertainty using fuzzy-set theory[J].Measurement Science and Technology,2000,11(4):430-435.
    [19] 夏新涛,贾晨辉,王中宇,等.滚动轴承摩擦力矩的乏信息模糊预报[J].航空动力学报,2009,24(2):945-950.
    [20] 夏新涛,陈晓阳,张永振,等.滚动轴承乏信息实验分析与评估[M].北京:科学技术出版社,2007.
    [21] 夏新涛,陈晓阳,张永振,等.航天轴承摩擦力矩不确定度的灰自助动态评估[J].哈尔滨工业大学学报,2006,38(7):294-297.
    [22] 王中宇,夏新涛,朱坚民.非统计及其工程应用[M].北京:科学出版社,2005.
    [23] 夏新涛,陈晓阳,张永振,等.航天轴承摩擦力矩的最大熵概率分布与bootstrap推断[J].宇航学报,2007,28(5):1395-1400.
    [24] 夏新涛,陈晓阳,张永振,等.滚动轴承振动的灰自助动态评估与诊断[J].航空动力学报,2007,22(1):156-162.
    [25] 夏新涛,徐永智,金银平,等,用自助加权范数法评估三参数威布尔分布可靠性最优置信区间[J].航空动力学报,2013,28(3):481-488.
    [26] 夏新涛,王中宇,孙立明,等.滚动轴承振动与噪声关系的灰色研究[J].航空动力学报,2004,19(3):424-428.
    [27] 张耀强,陈建军,邓四二,等.考虑表面波纹度的滚动轴承-转子系统非线性动力特性[J].航空动力学报,2008,23(9):1731-1736.
    [28] 苗学问,田喜明,洪杰.基于支持向量机的滚动轴承状态寿命模型[J].航空动力学报,2008,23(12):2190-2195.
    [29] 唐云冰,高德平,罗贵火.滚动轴承非线性轴承力及其对轴承系统振动特性的影响[J].航空动力学报,2006,21(2):366-373.
    [30] VIITALA R,WIDMAIER T,HEMMING B,et al.Uncertainty analysis of phase and amplitude of harmonic components of bearing inner ring four-point roundness measurement[J].Precision Engineering,2018,54(10):118-130.
    [31] 师义民,许勇,周丙常,近代统计方法[M].北京:高等教育出版社,2011.
    [32] YU Jun,XU Yonggang,YU Guangbin,et al.Fault severity identification of roller bearings using flow graph and non-na?ve Bayesian inference[J].Mechanical Engineering Science,2019,233(14):5161-5171.
    [33] SUN Shuang,PRZYSTUPA K,MING Wei,et al.Fast bearing fault diagnosis of rolling element using Lévy Moth-Flame optimization algorithm and Naive Bayes[J].Eksploatacja i Niezawodnosc:Maintenance and Reliability,2020,22(4):730-740.
    [34] ZHANG Nannan,WU Lifeng,JING Yang,et al.Naive bayes bearing fault diagnosis based on enhanced independence of data[J].Sensors,2018,18(2):1-17.
    [35] 王岩,罗倩,邓辉.基于变分贝叶斯的轴承故障诊断方法[J].计算机科学,2019,46(11):323-327.
    [36] LUO Zuolong,DONG Fenghui.Statistical investigation of bearing capacity of pile foundation based on bayesian reliability theory[EB/OL].[2021-05-02].https:∥doi.org/10.1155/2019/9858617.
    [37] ZHANG Nannan,WU Lifeng,WANG Zhonghua,et al.Bearing remaining useful life prediction based on Naive Bayes and Weibull distributions[J].Entropy,2018,20:1-19.
    [38] GAO Tianhong,LI Yuxiong,HUANG Xianzhen,et al.Data-driven method for predicting remaining useful life of bearing based on Bayesian theory[J].Sensors,2021,21(1):182-197.
    [39] 徐永智,夏新涛.用遗传变异法评估航天轴承摩擦力矩[J].轴承,2014(1):27-31.
    [40] 夏新涛,徐永智,滚动轴承性能变异的近代统计学分析[M].北京:科学出版社,2016.
    [41] 夏新涛,朱坚民,吕陶梅.滚动轴承摩擦力矩乏信息推断[M].北京:科学出版社,2010.
    [42] 夏新涛,章宝明,徐永智.滚动轴承性能与可靠性乏信息变异过程评估[M].北京:科学出版社,2013.
  • 加载中
计量
  • 文章访问数:  61
  • HTML浏览量:  4
  • PDF量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 刊出日期:  2022-05-28

目录

    /

    返回文章
    返回