留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IPDG方法的嵌套网格技术

赵博 赵明 刘伟 李孝检 刘正先

赵博, 赵明, 刘伟, 李孝检, 刘正先. 基于IPDG方法的嵌套网格技术[J]. 航空动力学报, 2022, 37(6): 1206-1216. doi: 10.13224/j.cnki.jasp.20210261
引用本文: 赵博, 赵明, 刘伟, 李孝检, 刘正先. 基于IPDG方法的嵌套网格技术[J]. 航空动力学报, 2022, 37(6): 1206-1216. doi: 10.13224/j.cnki.jasp.20210261
ZHAO Bo, ZHAO Ming, LIU Wei, LI Xiaojian, LIU Zhengxian. Chimera grid technology with IPDG method[J]. Journal of Aerospace Power, 2022, 37(6): 1206-1216. doi: 10.13224/j.cnki.jasp.20210261
Citation: ZHAO Bo, ZHAO Ming, LIU Wei, LI Xiaojian, LIU Zhengxian. Chimera grid technology with IPDG method[J]. Journal of Aerospace Power, 2022, 37(6): 1206-1216. doi: 10.13224/j.cnki.jasp.20210261

基于IPDG方法的嵌套网格技术

doi: 10.13224/j.cnki.jasp.20210261
基金项目: 国家自然科学基金(11972250,11672206); 天津市自然科学基金青年项目(20JCQNJC01950);天津市自然科学基金重点项目(19JCZDJC32000)
详细信息
    作者简介:

    赵博(1999-),男,硕士生,主要从事计算流体力学研究。

    通讯作者:

    赵明(1985-),男,讲师、硕士生导师,博士,主要从事计算流体力学研究。E-mail:ming.zhao@tju.edu.cn

  • 中图分类号: V211.3

Chimera grid technology with IPDG method

  • 摘要: 在内罚间断伽辽金(IPDG)方法框架内应用嵌套网格技术求解了二维可压缩Navier-Stokes方程。通过把黏性通量作为辅助变量实现了Navier-Stokes方程的降阶,继而用间断有限元方法进行离散得到空间半离散方程。时间推进采用Newton-Krylov隐式方法。利用库埃特流动精确解验证了该方法的精度。在此基础上,对包括有黏NACA0012翼型绕流、定常和非定常的圆柱绕流在内的若干典型测试算例开展数值模拟,进一步验证了该方法的鲁棒性和可靠性。在嵌套网格中应用了h型网格自适应技术用于提高激波分辨率,对NACA0012翼型无黏跨声速绕流开展数值模拟,结果表明:自适应之后的单元数相比无自适应时只增加了8.4%,但是激波分辨率得到了显著提高,激波附近的计算结果也与实验值符合得更好,从而验证了该方法的有效性。

     

  • [1] BENEK J,STEGER J,DOUGHERTY F.A flexible embedding technique with application to the Euler equations[R].AIAA-1983-1944,1983.
    [2] CHAN W M.Overset grid technology development at NASA ames research center[J].Computers and Fluids,2009,38(3):496-503.
    [3] POMIN H,WAGNER S.Aeroelastic analysis of helicopter rotor blades on deformable chimera grids[J].Journal of Aircraft,2004,41(3):577-584.
    [4] SITARAMAN J,POTSDAM M,WISSINK A,et al.Rotor loads prediction using helios: a multisolver framework for rotorcraft aeromechanics analysis[J].Journal of Aircraft,2013,50(2):478-492.
    [5] SHI Lei,WANG Zhijian,FU Song,et al.A PNPM-CPR method for Navier-Stokes equations[R].AIAA-2012-460,2012.
    [6] SHERER S E,SCOTT J N.High-order compact finite-difference methods on general overset grids[J].Journal of Computational Physics,2005,210(2):459-496.
    [7] SHERER S,VISBAL M,GALBRAITH M.Automated preprocessing tools for use with a high-order overset-grid algorithm[R].AIAA-2006-1147,2006.
    [8] REED W H,HILL T R.Triangular mesh methods for the neutron transport equation[R].LA-UR-73-479,1973.
    [9] COCKBURN B,SHU Chiwang.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws:Ⅱ general framework[J].Mathematics of Computation,1989,52(186):411-435.
    [10] COCKBURN B,LIN S Y,SHU Chiwang.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws:Ⅲ one-dimensional systems[J].Journal of Computational Physics,1989,84(1):90-113.
    [11] COCKBURN B,HOU S,SHU Chiwang.The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws:Ⅳ the multidimensional case[J].Mathematics of Computation,1990,54(190):545-581.
    [12] COCKBURN B,KARNIADAKIS G E,SHU Chiwang.Discontinuous Galerkin methods:theory,computation and applications[M].Berlin Heidelberg:Springer-Verlag,2000.
    [13] GALBRAITH M C,ORKWIS P D,BENEK J A.Extending the discontinuous Galerkin scheme to the chimera overset method[R].AIAA-2011-3409,2011.
    [14] GALBRAITH M C,BENEK J A,ORKWIS P D,et al.A discontinuous Galerkin chimera scheme[J].Computers and Fluids,2014,98:27-53.
    [15] GALBRAITH M C,ORKWIS P D,BENEK J A.A 3-D discontinuous Galerkin chimera overset method[R].AIAA-2014-0776,2014.
    [16] GALBRAITH M C,BENEK J A,ORKWIS P D,et al.A discontinuous Galerkin scheme for chimera overset viscous meshes on curved geometries[J].Computers and Fluids,2015,119:176-196.
    [17] NASTASE C,MAVRIPLIS D,SITARAMAN J.An overset unstructured mesh discontinuous Galerkin approach for aerodynamic problems[R].AIAA-2011-195,2011.
    [18] BRAZELL M J,KIRBY A C,MAVRIPLIS D.A high-order discontinuous-Galerkin octree-based AMR solver for overset simulations[R].AIAA-2017-3944,2017.
    [19] BASSI F,REBAY S.A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J].Journal of Computational Physics,1997,131(2):267-279.
    [20] ARNOLD D N,BREZZI F,MARINI D.Unified analysis of discontinuous Galerkin methods for elliptic problems[J].Siam Journal on Numerical Analysis,2002,39(5):1749-1779.
    [21] BASSI F,CRIVELLINI A,REBAY S,et al.Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations[J].Computers and Fluids,2005,34(4/5):507-540.
    [22] COCKBURN B,SHU Chiwang.The local discontinuous Galerkin method for time-dependent convection-diffusion systems[J].Siam Journal on Numerical Analysis,1998,35(6):2440-2463.
    [23] HARTMANN R,HOUSTON P.Symmetric interior penalty DG methods for the compressible Navier-Stokes equations:Ⅰ method formulation[J].International Journal of Numerical Analysis and Modeling,2006,3(1):1-20.
    [24] HARTMANN R,HOUSTON P.Symmetric interior penalty DG methods for the compressible Navier-Stokes equations:Ⅱ goal-oriented a posteriori error estimation[J].International Journal of Numerical Analysis and Modeling,2006,3(2):141-162.
    [25] DE WIART C C,HILLEWAERT K,BRICTEUX L,et al.Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method[J].International Journal for Numerical Methods in Fluids,2015,78(6):335-354.
    [26] TORO E F.Riemann solvers and numerical methods for fluid dynamics:a practical introduction[M].Berlin Heidelberg:Springer-Verlag,2009.
    [27] HARTMANN R.Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations[J].International Journal for Numerical Methods in Fluids,2006,51(9/10):1131-1156.
    [28] CAO Yihua,ZHAO Ming.Numerical simulation of rotor flowfields based on several spatial discretization schemes[J].Journal of Aircraft,2012,49(5):1535-1539.
    [29] ZHAO Ming,XIAO Zhixiang,FU Song.Predictions of transition on a hovering tilt-rotor blade[J].Journal of Aircraft,2014,51(6):1904-1913.
    [30] CRAIN T,GRAMOLI V,RAYNAL M.A contention-friendly binary search tree[R].Berlin Heidelberg:European Conference on Parallel Processing,2013.
    [31] WANG Zhijian,HARIHARAN N,CHEN Rangfu.Recent development on the conservation property of chimera[J].International Journal of Computational Fluid Dynamics,2001,15(4):265-278.
    [32] SUN Yuzhi,WANG Zhijian,LIU Yen.High-order multidomain spectral difference method for the Navier-Stokes equations[R].AIAA-2006-301,2006.
    [33] ZHANG Laiping,LIU Wei,LI Ming,et al.A class of DG/FV hybrid schemes for conservation law:Ⅳ 2D viscous flows and implicit algorithm for steady cases[J].Computers and Fluids,2014,97:110-125.
    [34] MüLLER B.High order numerical simulation of aeolian tones[J].Computers and Fluids,2008,37(4):450-462.
    [35] 孙强,吕宏强,伍贻兆.基于高阶物面近似的自适应间断有限元法欧拉方程数值模拟[J].空气动力学学报,2015,33(4):446-453.
  • 加载中
计量
  • 文章访问数:  63
  • HTML浏览量:  1
  • PDF量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回