留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于典型飞行任务的CCA技术优势分析

庄来鹤 徐国强 闻洁 董苯思 肖翼

庄来鹤,徐国强,闻洁,等.基于典型飞行任务的CCA技术优势分析[J].航空动力学报,2022,37(7):1363‑1378. doi: 10.13224/j.cnki.jasp.20210265
引用本文: 庄来鹤,徐国强,闻洁,等.基于典型飞行任务的CCA技术优势分析[J].航空动力学报,2022,37(7):1363‑1378. doi: 10.13224/j.cnki.jasp.20210265
ZHUANG Laihe,XU Guoqiang,WEN Jie,et al.Superiority analysis of CCA technology under typical flight mission[J].Journal of Aerospace Power,2022,37(7):1363‑1378. doi: 10.13224/j.cnki.jasp.20210265
Citation: ZHUANG Laihe,XU Guoqiang,WEN Jie,et al.Superiority analysis of CCA technology under typical flight mission[J].Journal of Aerospace Power,2022,37(7):1363‑1378. doi: 10.13224/j.cnki.jasp.20210265

基于典型飞行任务的CCA技术优势分析

doi: 10.13224/j.cnki.jasp.20210265
基金项目: 

国家基础研究重大项目基金(2017⁃Ⅲ⁃0005⁃0029) 

详细信息
    作者简介:

    庄来鹤(1993-),男,博士生,主要研究方向为航空发动机综合热管理。

  • 中图分类号: V231.1

Superiority analysis of CCA technology under typical flight mission

  • 摘要:

    基于典型飞行任务,在F⁃119发动机方案的循环参数基础上,对采用冷却冷却空气(CCA)技术的航空发动机性能开展研究,分析CCA技术对发动机总体性能及涡轮叶片温度的影响规律,评估采用CCA技术的涡扇发动机对其所装配飞机的飞行性能的影响。结果表明:针对仅预冷高压涡轮动叶冷却气方案,当保持冷却空气流量不变时,采用CCA技术可将涡轮冷气温度降低16.98%~41.21%,使得高压涡轮动叶表面最高温度降低8.89%~16.80%;当保持叶片表面最高温度不变时,采用CCA技术可减少高压涡轮动叶48.61%的冷却用气,且发动机的推力和耗油率等总体性能基本不变;针对同时预冷高压涡轮导叶和动叶冷却气方案,通过调整循环参数,在保持冷却空气流量和叶片温度不变的前提下,可使涡轮前最高温度提高6.91%,从而提高典型飞行状态下的航发推进性能,进而有效提升所配装飞机的起飞载质量、最大爬升率、最大马赫数、使用升限及航程等飞行性能。

     

  • 图 1  AL⁃31F发动机中采用的CCA换热器

    Figure 1.  CCA heat exchanger applied in AL⁃31F engine

    图 2  AETD项目自适应变循环发动机[4]

    Figure 2.  Adaptive variable cycle engine of AETD project[4]

    图 3  Cd0Ma变化规律

    Figure 3.  Variation law of Cd0 with Ma

    图 4  K1Ma变化规律

    Figure 4.  Variation law of K1 with Ma

    图 5  采用CCA技术的发动机模型网络图

    Figure 5.  Model network diagram of the engine using CCA technology

    图 6  CCA换热器热力计算过程

    Figure 6.  Thermodynamic process of the CCA heat exchanger

    图 7  CCA技术对循环参数影响分析流程图

    Figure 7.  Flowchart of the effect of the CCA technology on the cycle parameters

    图 8  CCA换热器结构示意图

    Figure 8.  Structure sketch of the CCA heat exchanger

    图 9  Wilcock和Young简化涡轮叶片模型

    Figure 9.  Turbine blade simplified model proposed by Wilcock and Young

    图 10  不同方案下发动机总推力变化

    Figure 10.  Variation of engine overall thrust for different schemes

    图 11  不同方案下发动机耗油率变化

    Figure 11.  Variation of the specific fuel consumption for different schemes

    图 12  不同方案下高压涡轮动叶冷却空气温度变化

    Figure 12.  Variation of the cooling air for the HPT rotor for different schemes

    图 13  不同方案下涡轮叶片表面温度变化

    Figure 13.  Variation of the temperature of the turbine blade surface for different schemes

    图 14  CCA对冷却空气及涡轮前温度的影响

    Figure 14.  Effect of the CCA technology on the cooling air and turbine inlet temperature

    图 15  CCA对高压涡轮叶片温度的影响

    Figure 15.  Effect of the CCA technology on the HPT blade

    图 16  CCA对推力及耗油率的影响

    Figure 16.  Effect of the CCA technology on the thrust and specific fuel consumption

    图 17  CCA技术对不同飞行任务的影响

    Figure 17.  Effect of the CCA technology on different flight mission

    表  1  F⁃22战斗机质量组成

    Table  1.   Mass composition of F⁃22 fighter

    参数数值
    起飞质量/kg27 216
    燃油质量/kg11 430
    机上乘员质量/kg90
    发动机质量/kg3 537
    机体结构质量/kg7 340
    机内装载质量/kg4 817
    起飞燃油系数0.42
    机体结构系数0.465
    发动机推质比9
    下载: 导出CSV

    表  2  换热器结构参数

    Table  2.   Structural parameters of the heat exchanger

    参数数值
    管外径/mm5
    管壁厚/mm0.3
    纵向管间距/mm7.3
    单排进气管数4
    换热器高度/mm90
    弯头个数3
    横向管排数240
    换热面积/m24.79
    下载: 导出CSV

    表  3  冷却性能参数

    Table  3.   Cooling performance parameters

    参数数值(目前水平)
    Kcool0.045
    ηint0.70
    εf0.40
    Bimatel0.15
    Bitbc0.30
    下载: 导出CSV

    表  4  F⁃119发动机设计点循环参数[20]

    Table  4.   Cycle parameters of F⁃119 engine design point[20]

    参数飞行状态
    H=0,Ma=0H=11,Ma=1.5
    换算空气流量/(kg/s)126125.52
    涵道比0.30.298
    风扇压比4.54.5
    风扇效率0.850.854 9
    压气机压比5.85.786
    压气机效率0.860.861 3
    涡轮前温度/K1 8602 011
    高压涡轮效率0.870.875
    低压涡轮效率0.880.884 5
    高压导叶引气比例/%1212
    高压动叶引气比例/%7.27.2
    低压导叶引气比例/%5.55.5
    飞机系统引气比例/%11
    下载: 导出CSV

    表  5  F⁃119发动机设计点验证(H=0 km、Ma=0)

    Table  5.   Verification of F⁃119 engine design point (H=0 km,Ma=0)

    参数文献[20]计算值GASTURB软件
    推力/kN105.5105.08105.9
    耗油率/(kg/(Nh))0.083 70.083 30.082 6
    高压涡轮膨胀比2.662.722.622
    低压涡轮膨胀比2.112.132.079
    喉道面积/m20.244 80.243 70.249 9
    下载: 导出CSV

    表  6  F⁃119发动机非设计点验证(H=11 km、Ma=1.5)

    Table  6.   Verification of F⁃119 engine off design point(H=11 km,Ma=1.5)

    参数文献[20]计算值GASTURB软件
    推力/kN62.559.1660.11
    耗油率/(kg/(Nh))0.118 30.1280.119 3
    换算流量/(kg/s)126125.51 125.52
    风扇增压比4.54.54.5
    高压压气机增压比5.85.7865.786
    下载: 导出CSV

    表  7  F⁃22先进战斗机飞行任务约束[21]

    Table  7.   Flight mission constraints of F⁃22 advanced fighter aircraft[21]

    状态编号航段条件说明
    性能极限状态1起飞滑跑H=0 km,Ma=0~0.13,Sto≤400 m,ξ=1.0最大加力状态
    2最大爬升H=0 km,Ma=0.8,dh/dt≥160 m/s,ξ=1.0最大状态
    3作战盘旋H=9.144 km,Ma=1.6,n=6.5,ξ=0.78最大加力状态
    4最大飞行马赫数H=10 km,Ma=2.25,ξ=0.7最大加力状态
    5使用升限H=19 km,Ma=1.6,ξ=0.7最大加力状态
    巡航状态6亚声速巡航H=11 km,Ma=0.7,ξ=0.95评估最大航程
    7超声速巡航H=11 km,Ma=1.5,ξ=0.95评估最大超声速巡航航程
    下载: 导出CSV

    表  8  不同航段下飞机载质量及推力需求

    Table  8.   Mass and thrust of aircraft for each route segment

    航段编号飞机载质量/kg单发推力需求/kN
    127 216.0153.49
    227 216.0106.88
    321 391.7122.22
    419 051.2109.5
    519 051.218.04
    624 494.415.10
    724 494.460.02
    下载: 导出CSV

    表  9  方案二下CCA换热器冷热侧进口参数

    Table  9.   Inlet parameters of CCA heat exchanger of hot and cold sides for the second schema

    位置参数工况1工况2工况3工况4工况5工况6工况7
    热侧温度/K803841884849796593865
    压力/MPa2.623.352.642.230.430.542.10
    流量/(kg/s)6.98.76.76.01.21.75.3
    冷侧温度/K469499527541478352509
    压力/MPa0.450.600.470.500.080.100.36
    流量/(kg/s)28.840.731.251.96.510.622.0
    下载: 导出CSV

    表  10  方案三冷却空气引气流量

    Table  10.   Cooling air mass flow for the third schema

    工况流量/(kg/s)
    13.4
    24.2
    33.2
    42.9
    50.6
    60.8
    72.6
    下载: 导出CSV

    表  11  改进CCA技术换热器冷热侧进口参数

    Table  11.   Inlet parameters of the modified CCA heat exchanger of cold and hot sides

    位置参数工况1工况2工况3工况4工况5工况6工况7
    热侧(冷却空气引气热力参数)温度/K849875929959869612877
    压力/MPa2.863.803.063.170.400.612.15
    流量/(kg/s)19.725.620.020.82.54.914.4
    冷侧(外涵空气热力参数)温度/K495517548588513361515
    压力/MPa0.490.670.530.610.070.110.37
    流量/(kg/s)22.026.841.431.944.54.910.9
    下载: 导出CSV

    表  12  有无CCA方案时起飞质量组成

    Table  12.   Takeoff mass composition with or without CCA technology

    参数无CCA方案有CCA方案
    起飞推力/kN312335.6
    起飞质量/kg27 21630 000
    燃油质量/kg11 43013 650
    机上乘员质量/kg9090
    发动机质量/kg3 5373 804
    机体结构质量/kg7 3407 643
    机内装载质量/kg4 8174 817
    起飞燃油系数0.420.455
    机体结构系数0.4650.465
    发动机推质比99
    下载: 导出CSV
  • [1] CONNORS J.The engines of Pratt and Whitney:a technical history[M].Reston,US:American Institute of Aeronautics and Astronautics Incorporation,2009:321⁃333.
    [2] SUHLER P A.From rainbow to gusto:stealth and the design of the Lockheed blackbird[M].Reston,US:American Institute of Aeronautics and Astronautics Incorporation,2009:217⁃230.
    [3] COEN P.NASA Fundamental aeronautics program:supersonics project[R].Washington:NASA,2009:1⁃38.
    [4] SIMMONS R.Design and control of a variable geometry turbofan with an independently modulated third stream[D].Columbus,US:Ohio State University,2009.
    [5] BRUENING G B,CHANG W S.Cooled cooling air systems for turbine thermal management[R].Indianapolis,Indiana:the International Gas Turbine and Aero engine Congress and Exhibition,1999.
    [6] KALLATH H,KHOLI F K,JIN Q,et al.Numerical study of the flow uniformity inside the high⁃pressure side manifolds of a cooled cooling air heat exchanger[J].Applied Thermal Engineering,2021,189(4):116645.1⁃116645.14.
    [7] PUTERBAUGH R,BROWN J,BATTELLE R.Impact of heat exchanger location on engine performance[R].SAE Technical Paper 2012‑01‑2168,2012.
    [8] BAO W,QIN J,ZHOU W,et al.Performance limit analysis of Re⁃cooled cycle for regenerative cooling systems[J].Energy Conversion and Management,2009,50(8):1908⁃1914.
    [9] ZHAO W,HUANG C,ZHAO Q,et al.Performance analysis of a pre⁃cooled and fuel⁃rich pre⁃burned mixed⁃flow turbofan cycle for high speed vehicles[J].Energy,2018,154(1):96⁃109.
    [10] XU Guoqiang,ZHUANG Laihe,DONG Bensi,et al.Optimization design with an advanced genetic algorithm for a compact air⁃air heat exchanger applied in aero engine[J].International Journal of Heat and Mass Transfer,2020,158:119952.1⁃119952.13.
    [11] GAMBLE E,GUTIERREZ J,GIEL D,et al.Development of a scramjet/ramjet heat exchanger analysis tool (SRHEAT)[R].Hartford,US:the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2008.
    [12] 胡训尧.航空发动机外涵空气换热器性能研究[D].南京:南京航空航天大学,2012.

    HU Xunyao.Study on performance of heat exchanger in bypass stream of aero⁃engine[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012.(in Chinese)
    [13] KIM N H,CHO J R,RA Y J.Structural integrity analysis and evaluation of cooled cooling air heat exchanger for aero engine[J].International Journal of Precision Engineering and Manufacturing,2018,19(4):529⁃535.
    [14] KIM C S,KIM H J,CHO J R,et al.Manufacturing and mechanical evaluation of cooled cooling air (CCA) heat exchanger for aero engine[J].International Journal of Precision Engineering and Manufacturing,2016,17(9):1195⁃1200.
    [15] 沙正平.飞机设计手册:第4册 军用飞机总体设计[M].北京:航空工业出版社,2005.
    [16] MATTINGLY J D.Aircraft engine design[M].2nd.ed.Reston,US:American Institute of Aeronautics and Astronautics Incorporation,2015.
    [17] WALSH P.Gas turbine performance[M].2nd.ed.Oxford,UK:Blackwell Science Limited,2008.
    [18] LI Haiwang,HUANG Haoran,XU Guoqiang,et al.Performance analysis of a novel compact air⁃air heat exchanger for aircraft gas turbine engine using LMTD method[J].Applied Thermal Engineering,2017,116:445⁃455.
    [19] WILCOCK R C,YOUNG J B,HORLOCK J H.The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles[J].Journal of Engineering for Gas Turbines and Power,2005,127(1):109⁃120.
    [20] 陈仲光,张志舒,李德旺,等.F119发动机总体性能特点分析与评估[J].航空科学技术,2013(3):43⁃46.

    CHEN Zhongguang,ZHANG Zhishu,LI Dewang,et al.Analysis and evaluation of F119 engine overall performance[J].Aeronautical Science and Technology,2013(3):43⁃46.(in Chinese)
    [21] 陈玉春,王晓锋,屠秋野,等.多用途战斗机/涡扇发动机一体化循环参数优化[J].航空学报,2008,29(3):554⁃561.

    CHEN Yuchun,WANG Xiaofeng,TU Qiuye,et al.Integrated design optimization of turbofan engines cycle for multi⁃role fighters[J].Acta Aeronautica et Astronautica Sinica,2008,29(3):554⁃561.(in Chinese)
  • 加载中
图(17) / 表(12)
计量
  • 文章访问数:  65
  • HTML浏览量:  29
  • PDF量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27

目录

    /

    返回文章
    返回